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Abstract 

 The Common Core State Standards for Mathematics (CCSSM) are founded on a 

long history of mathematics education research emphasizing the importance of teaching 

mathematics for understanding.  The CCSSM along with the National Council of 

Teachers of Mathematics (NCTM) recommend the use of technology in the teaching of 

mathematics.  New mobile technologies in society facilitate use in mathematics 

classrooms, and these technologies rely on software applications called applets.  Certain 

applets have been developed for use in teaching mathematics.   

 This study investigated the questions: Is it possible to determine the 

characteristics of applets that lead students toward greater understanding of mathematical 

concepts? And, can we determine specific actions and strategies learners develop while 

using applets that increase their understanding?   

 Using a case study methodology, continuous motion, screen capture and audio 

recordings of seven high-school AP Calculus students were made while each used five 

Maplets for Calculus applets developed for continuity concepts.  Audio and screen 

capture recordings were transcribed and analyzed to determine increases in understanding 

of continuity concepts using a rubric based on Tall’s Three Worlds model of mathematics 

understanding.  Using Drijvers and Trouché’s Instrumental Approach theory this 

evidence was also analyzed to determine the features of the Maplets and strategies used 

by the students that contributed to the increases in understanding.
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 The findings relevant to teachers of mathematics included: evidence about the 

features of and strategies used by the students with the Maplets that developed students’ 

embodied and symbolic understanding of left and right continuity; evidence for how the 

proceptual-symbolic understanding of the definition of continuity is developed; evidence 

of students using the concepts of left and right continuity to develop a formal ‘rule’ for 

determining the overall continuity of a function; evidence of formal thinking in the 

embodied world for epsilon-delta continuity; and evidence that supports the contributions 

of Maplets in developing procedural understanding. 

 A finding of relevance to applet developers included recommendations based on 

evidence for the sequencing of Maplets along with features and learner strategies that 

contribute to understanding of continuity in the symbolic world. 
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I.  Introduction to the Problem 

 

Introduction 

 During the early 20
th

 Century, mathematics education in the United States focused 

on repetition and the increase in proficiency and accuracy of arithmetic procedures on 

numbers (National Research Council [NRC], 2001).  However, research by Brownell 

(1935) questioned the reliance on rote memorization and repetition.  In reviewing the 

performance of students on arithmetic tasks, he found that those instructed with methods 

that focused on the conceptual understanding of addition and subtraction, performed as 

well as students who had been exposed to drill and repetition of addition facts (p. 9).  “In 

the 1950s and 1960s, the new math movement defined successful mathematics learning 

primarily in terms of understanding the structure of mathematics together with its 

unifying ideas, and not just as computational skill. This emphasis was followed by a 

‘back to basics’ movement that proposed returning to the view that success in 

mathematics meant being able to compute accurately and quickly” (NRC, 2001, p. 115).  

 In its Agenda for Action: Recommendations for School Mathematics of the 

1980’s, the National Council of Teachers of Mathematics (NCTM) recommended that 

school mathematics curriculum should be problem solving based; part of their reasoning 

for this emphasis being, “true problem-solving power requires a wide repertoire of 

knowledge, not only of particular skills and concepts but also of the relationships among 

them and the fundamental principle that unify them” (NCTM, 1980).  The second 

recommendation in the Agenda for Action, “The Concept of Basic Skills in Mathematics 
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Must Encompass More Than Computational Facility,” includes this statement regarding 

basic skills: 

The higher-order mental processes of logical reasoning, information processing, 

and decision making should be considered basic to the application of 

mathematics. Mathematics curricula and teachers should set as objectives the 

development of logical processes, concepts, and language, including: the 

identification of likenesses and differences leading to 

classification; understanding, making, and applying definitions; the development 

of a feeling for informal proof including counterexamples and generalizations 

(NCTM, 1980). 

This emphasis on mathematical understanding included in the Agenda for Action 

continued in subsequent reports released by the NCTM, other organizations, and 

researchers.  An outcome of these reports was the release of the Curriculum and 

Evaluation Standards for School Mathematics by the NCTM in 1989.  Often referred to 

as the NCTM Standards, this report included thirteen curriculum standards that addressed 

both content and emphasis in teaching mathematics.  A common theme throughout the 

standards is summarized by the statement, “the study of mathematics should emphasize 

reasoning so that students can believe that mathematics makes sense” (NCTM, 1989, p. 

29). 

In 2000, the NCTM published the Principles and Standards for School 

Mathematics (PSSM).  The Learning Principle includes the statement, “unfortunately, 

learning mathematics without understanding has long been a common outcome of school 

mathematics instruction” (p. 20).  Cangelosi (2003) further highlighted this absence of 
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teaching for understanding in describing many math classroom lessons as ones where 

students are told about facts or steps in a procedure, guided through some practice 

problems, then given exercises or problems to complete on their own (p. v). 

 According to the PSSM Learning Principle, the practice of teaching mathematics 

by focusing on definitions and procedures opposes research findings:  

In recent decades, psychological and educational research on learning complex 

subjects, such as mathematics has solidly established the important role of 

conceptual understanding in the knowledge and activity of persons who are 

proficient….One of the most robust findings of research is that conceptual 

understanding is an important component of proficiency (NCTM, 2000, p. 20). 

 In the late 2000’s, the Common Core State Standards (CCSS) were developed by 

the National Governors Association Center for Best Practices (NGA) and the Council of 

Chief State School Officers (CCSSO) in order to provide a consistent framework for 

primary and secondary school curricula throughout the United States.  The standards for 

English language arts and mathematics were presented in 2010. 

 The CCSS Mathematics (CCSSM) focuses on students’ understanding of 

mathematics structure and concepts.  The educational reform group, Achieve, 

commenting on the mathematics standards, stated: “the high school standards set a 

rigorous definition of college and career readiness, not by piling topic upon topic, but by 

demanding that students develop a depth of understanding” (CCSSO & NGA, 2010, p. 

2).  The CCSSM section on connecting mathematical practice to the standards for 

mathematical content states: 
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Students who lack understanding of a topic may rely on procedures too heavily.  

Without a flexible base from which to work, they may be less likely to consider 

analogous problems coherently, justify conclusions, apply the mathematics to 

practical situations, use technology mindfully to work with the mathematics, 

explain the mathematics accurately to other students, step back for an overview, 

or deviate from known procedure to find a shortcut.  In short, a lack of 

understanding prevents a student from engaging in the mathematical practices   

(p. 8). 

The CCSSM being grounded in “evidence and research” (CCSSO & NGA, 2010, p. 1) in 

formulation, emphasize the need for building the conceptual knowledge base of students.  

Given this renewed emphasis on understanding mathematical concepts, through the 

CCSSM, how can teachers move toward developing greater mathematical understanding 

with their students? 

 One of the tools that can be used to help foster greater understanding of 

mathematical concepts, endorsed by both the CCSSM and the PSSM, is technology.  

“Students can learn more mathematics, more deeply with the appropriate use of 

technology,” states the PSSM Technology Principle.  “Students who have trouble with 

basic procedures can develop and demonstrate other mathematical understandings, which 

in turn can help them learn the procedures” (NCTM, 2000, p. 27).  The CCSSM Standard 

for Mathematical Practice #5: Use Appropriate Tools Strategically, states that, 

“mathematically proficient students consider the available tools when solving a 

mathematical problem.  These tools might include…a calculator, a spreadsheet, a 

computer algebra system, a statistical package, or dynamic geometry software” (CCSSO 
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& NGA, 2010, p. 7).  Throughout the CCSSM standards for mathematical content, uses 

of technology are encouraged in the understanding of mathematical concepts.  One 

example, from the high school algebra, “reasoning with equations and inequalities” 

domain, under the “represent and solve equations and inequalities graphically” cluster 

suggests using technology to graph functions or make a table of values to find and 

explain why the x-coordinates of the points where the graph of y = f(x) and y = g(x) 

intersect are solutions to the equation f(x) = g(x) (p. 66). 

 One result of the proliferation of mobile technology during the early 2000’s is the 

increased use of applets.  Applets are software applications that are executed in the 

context of another program, usually a web browser or other application (Trigo, Oguin, & 

Matai, 2010).  Of the many applets developed, Maplets for Calculus (M4C) are a series of 

applets (over 140 as of this writing) providing users with typical examples and exercises 

on a variety of topics covered in precalculus and the traditional three-semester calculus 

courses.  The M4C applets allow for computer generated or user entered problems.  

Maplets provide users with an interactive graphic interface that provide immediate 

feedback, hints, and step by step checking of solutions/entries.  These applets are 

designed using Maple software (the fusion of Maple and applets accounts for the name 

Maplets) and have been developed to increase student technical skill and understanding 

(Meade & Yasskin, March 2008 and December 2008).  

 The CCSSM includes an end note on transitions, one of which is the transition 

from high school to post-secondary/college education (CCSSO & NGA, 2010, p. 84).  

Precalculus and calculus are typical courses offered to high school students planning on 

continuing mathematics studies in college.  While a study considering the development 
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for understanding of all concepts within these courses would be worthwhile, it is beyond 

the scope of any single study.  Continuity of functions is an important topic in calculus, 

yet is often difficult to learn and challenging to teach (Tall & Vinner, 1981; Robert, 1982; 

Núñez, 1993).  In preparation of this manuscript, a search for studies considering 

continuity yielded a limited number of results when compared to the number of studies 

regarding topics such as functions and limits.  It appears that investigations into the 

understanding of the concepts of continuity are underrepresented.  M4C offer five 

different Maplets that address topics included in the study of continuity, including 

addressing continuity from a graphic, algebraic, and numeric perspective.  For these 

reasons, it is the intent of this study to investigate the use of Maplets for Calculus for 

developing understanding of the concept of continuity. 

Problem Statement   

The NCTM Principles and Standards for School Mathematics (PSSM) state that, 

“students must learn mathematics with understanding” (NCTM, 2000, p. 20).  Building 

on this and released in 2010, the Common Core State Standards for Mathematics 

(CCSSM) endeavor to stress conceptual understanding and the organization/structure of 

mathematical ideas.  

Research supports the use of technology as a way for students to focus on 

understanding the underlying structure and concepts of mathematics (Borwein & Bailey, 

2003; Kaput, 1992; NCTM, 2000).   Further, the NCTM PSSM asserts technology 

enhances learning, supports effective teaching, and influences what mathematics is taught 

(2000, p. 24).   The CCSSM also include Standards for Mathematical Practice that 

suggests various technologies be available to all students in stating: 
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Mathematically proficient students consider the available tools when solving a 

mathematical problem. These tools might include pencil and paper, concrete 

models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra 

system, a statistical package, or dynamic geometry software (CCSSO & NGA, 

2010, p. 7). 

More and more, these technologies include applets that are available on computers, 

tablets, and smart phones.  Maplets for Calculus are specific applets that have been 

developed to assist students in the learning of calculus, and five Maplets have been 

developed for addressing the conceptual understanding of continuous functions. 

 Is it possible to determine the characteristics of applets that lead students toward 

greater understanding of mathematical concepts?  Can we determine specific actions and 

strategies learners develop while using applets that increase their understanding?  In 

particular, which features of Maplets for Calculus lead students toward greater 

understanding of continuity of functions?  Can we determine specific actions and 

strategies students develop while using Maplets that increase their understanding? 

Conceptual Framework 

In this study, the following approaches and theories provided the framework for 

investigating the problem stated and its objectives: instrumental approach, think aloud 

methodology and David Tall’s Three Worlds of mathematics. 

The instrumental approach as developed by Drijvers and Trouché (2008) is 

grounded, in part, by the work of Vygotsky (1930/1985) and Rabardel (2002).  It 

concerns the use of artifacts, a material or abstract ‘tool’ that can be used to sustain a 

certain activity or problem situation, and the development of schemes by a user for 
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employing the artifact.  During this process, the artifact develops into an instrument 

whose use becomes second nature to the user (Drijvers & Trouché, 2008, p. 368).  

Though the ideas for the instrumental approach were developed before the proliferation 

of technology, researchers of mathematics education have found this framework useful 

for investigating the teaching and learning of mathematics using technology.  Though 

discussed in a study investigating the use of computer algebra systems (CAS) to learn 

algebraic concepts, Drijvers and Trouché justified their use of the instrumental approach 

theory in writing:  

It allows for an analysis of the learning process in technological environments of 

increasing complexity, and takes into account the non-trivial character of using 

computerized environments.  Furthermore, it stresses the subtle relationship 

between machine technique and mathematical insight, and provides a conceptual 

framework for investigating the development of schemes, in which both aspects 

are included.  This is helpful for designing student activities, for observing 

interaction between students and the computer algebra environment, for 

interpreting it and for understanding what works well and what does not       

(2008, p. 375). 

As the primary question to be answered by this research is exactly the “what works well 

and what does not” for students using applets to learn about concepts, the instrumental 

approach provides the researcher with a means for examining the impact of the applets. 

 Drijvers, Doorman, Boon, Van Gisbergen, and Gravemeijer (2007) state that 

instrumentation theory may be used by researchers in priori hypothetical investigations to 

formulate hypotheses and focus research direction, or a posteriori as a guide for data 
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analysis and forming conclusions (p. 118).  Qualitative research approaches involve 

systematic investigation of human behavior, social phenomena, and interaction; they rely 

on verbal and visual communication to answer questions.  Case study research can be 

indicated when a researcher sets out to investigate particular people, programs, 

curriculum, or techniques; and can provide rich detail and insight into the cases being 

studied (Lichtman, 2013).  

 One method used to collect and analyze data from subjects while solving 

problems is the think aloud method.  According to van Someren, Barnard, and Sandberg 

(1994): 

The think aloud method consists of asking people to think aloud while solving a 

problem and analyzing the resulting verbal protocols. This method has 

applications in psychological and educational research on cognitive processes but 

also for the knowledge acquisition in the context of building knowledge-based 

computer systems. In many cases the think aloud method is a unique source of 

information on cognitive processes. Think aloud protocols are collected by 

instructing people to solve one or more problems while saying ‘what goes through 

their head’, stating directly what they think (p. 1). 

While developed before the proliferation of technology and its use in studying and 

learning mathematics, the think aloud method has been used to analyze the thought 

processes of students while solving mathematics problems (e.g. Kintsch & Greeno, 1985; 

Riley, Greeno, & Heller, 1983; Sandberg & de Ruiter, 1985).  More recently, researchers 

have employed think aloud procedures in their investigations of student use of technology 

to learn mathematics (i.e. Drijvers, 2003; Doorman, Drijvers, Gravemeijer, Boon, & 
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Reed, 2012).  The think aloud method is indicated for this research by Drivers and 

Trouché’s (2008) observation regarding the use of instrumental approach: “A difficulty is 

that we cannot observe mental schemes directly.  Our observations are limited to 

techniques students carry out with the artifact, and to the way they report on this in 

written or oral form.  From these data we try to construct schemes...” (p. 371).  As the 

think aloud method calls for the subject to verbalize their thought processes while solving 

problems, application to this study is indicated for analyzing both the subjects’ 

development of schema while using Maplets to solve continuity problems, and in order to 

determine students’ understanding of continuity.  The determination of this level of 

understanding leads to the third framework that guides this study: Tall’s Three Worlds of 

mathematics. 

 Núñez, Edwards, and Matos (1999) discussed two ways in which continuity is 

addressed in textbooks and classroom teaching.  A natural continuity refers to the 

informal/intuitive definition that characterizes a continuous function as one that can be 

graphed without gaps or jumps.  Formal definitions of continuity are presented using 

limits, limit and function symbolism, and are ‘rigorous’ or precise in definition.  Núñez 

describes most teaching patterns for continuity as introducing students to the idea of 

natural continuity using ideas and examples from their lived experiences, then moving 

towards more formal definitions.  Núñez et al. argues that students’ difficulty with 

continuity concepts is inherent, as the two definitions of continuity are “radically 

different cognitive concepts” (p. 55) and that the natural continuity definition involves an 

embodied cognition that would serve teachers and students better than formal treatments.   

This discrepancy and the challenges presented students because of it, calls for a 
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framework that accounts for provisions of both the natural and formal continuity 

definitions. 

Tall’s (2008) Three Worlds of Mathematics framework guided this research in 

documenting students’ understanding of continuity. Tall’s Three Worlds include: (1) 

conceptual-embodied world based on the perception, reflection, and investigation of 

properties of objects seen and experienced in the real world; (2) proceptual-symbolic 

world developed from the embodied world through actions (processes) that can be 

symbolically represented and can themselves be thought of as concepts, thus the term 

procept; and (3) axiomatic-formal world is characterized by the formal world of 

mathematical knowledge construction by using set-theoretic definitions and deducing 

other properties and schema using formal proof (pp. 7-8).  The Three Worlds model 

accounts for overlap between the embodied-conceptual and the proceptual-symbolic as 

understanding in either or both of these worlds develops toward the axiomatic-formal 

level of understanding, which can inform this study with regard to the Núñez et al. (1999) 

concerns listed.  Further reasoning for the use of the Three Worlds of mathematics comes 

from Tall’s (2008) discussion of calculus. “Calculus builds in three very different 

worlds,” Tall states before providing that calculus is a blend of the world of embodiment 

(drawing graphs) and symbolism (manipulating formulae) and formalism (proof) (p. 15).  

While Tall provided examples of limit and derivative concepts, a parallel blending of 

worlds involving continuity could include: embodiment (investigating graphs); 

symbolism (limit and function notation); and formalism (proving continuity at a point).  
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Objectives 

Global Objective 

This study sought to determine the properties of applets and the actions of 

students while using applets that foster the development of conceptual understanding of 

mathematics.  

Local Objectives 

The following ‘local’ objectives informed the global objective of this study: 

1. Determine the particular characteristics of the Maplets for Calculus applets 

that promote student understanding of the mathematical concept of continuity 

of a function. 

2. Determine the particular actions and strategies a student develops while using 

the Maplets, which promote the understanding of continuity. 

Research Questions 

 Questions investigated during the course of this research were: 

1. The Maplets for Calculus that present continuity exercises include interactive 

graphics, hints, “check” answer, and other features.  To what degree do each of 

these features help promote conceptual understanding of continuity with respect 

to Tall’s Three Worlds? 

2. These Maplets on continuity also allowed students to use multiple features 

simultaneously.  Are there particular combinations of features, e.g. utilization 

schemes, students developed that lead to a more ‘formal’ understanding of 

continuity?  Are there utilization schemes that inhibited understanding of 
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continuity?  With respect to Drijvers and Trouché (2008), “what works well and 

what does not” (p. 375)? 

3. In addition to the computer and Maplet software, students were allowed the use of 

paper, pencil, and a calculator. Are there any other patterns of behavior or thought 

that students exhibited while engaged with the Maplets that promote/inhibit the 

development of conceptual understanding?   

Logical Structure 

The structure for this investigation derived logically from the instrumental 

approach that accounts for actions and schema development of the student-user as he or 

she engaged with Maplets to complete exercises about continuity.   The instrumental 

approach has framed investigations using a variety of technologies (spreadsheets, 

dynamic geometry software, CAS, etc.) and is beneficial to this study, as the use of 

computer applets is the primary artifact being employed (Drijvers & Trouché, 2008).   In 

this study, actions of students, and characteristics of the Maplets that lead toward greater 

understanding for continuity were documented.   

The development of more sophisticated schemes might indicate, as it did in 

Drijvers’ (2003) study, a higher level of understanding.  For example, if a student used a 

particular series of keystrokes and inputs to solve an exercise, and later repeated this 

sequence to answer subsequent exercises; this could be considered a utilization scheme 

that contributes to the understanding of the concept.  A schema developed using 

particular features of the Maplet repeatedly provided evidence of that characteristic of the 

applet as contributing to the increase in understanding.  The think aloud method provided 

for the data upon which student understanding was determined, as well as the action 
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schema developed that helped increase understanding.  For example, during a Maplet 

session, one student stated a function was not continuous because the value of the left and 

right limits did not equal the value of the function for the given value of x; demonstrating 

understanding of the definition of continuity.  Tall’s Three Worlds informed this study by 

providing the framework for which student understanding of the concepts of continuity.  

The example regarding left/right limits and the function value above indicates 

understanding in the proceptual-symbolic world for the concept of continuity – the use of 

properties and mathematical objects to form a new/greater understanding of the concept. 

Definitions 

 Terms and definitions used throughout this study include: 

Applets - Applets are software applications that are executed in the context of 

another program, usually a web browser or other application (Trigo, Oguin, & Matai, 

2010).  

Artifact – An artifact is a particular thing or an abstract object that can be used to 

perform particular tasks (Rabardel, 2002). 

Axiomatic-formal world – Part of Tall’s Three Worlds of mathematics theory.  

The formal world (abbreviated title) represents mathematics based on set-theoretical 

definitions of concepts.   Knowledge and properties about these concepts are represented 

by theorems (axioms) and are developed through the use of formal proof (Tall, 2008). 

Concept-embodied world – Part of Tall’s Three Worlds of mathematics theory.  

The embodied world (abbreviated title) is based on the perception of and reflection on 

properties of objects.  Initially sensed physically, these properties become part of a 
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mental image (embodied).  It refers to the perceptual representations of concepts (Tall, 

2008). 

Conceptual knowledge – Conceptual knowledge refers to: 

…knowledge that is rich in relationships.  It can be thought of as a connected web 

of knowledge, a network in which the linking of relationships are as prominent as 

the discrete pieces of information.  Relationships pervade the individual facts and 

propositions so that all pieces of information are linked to some network (Hiebert 

& Lefevre, 1986, pp. 3-4). 

Conceptual understanding – “Conceptual understanding refers to an integrated 

and functional grasp of mathematical ideas. Students with conceptual understanding 

know more than isolated facts and methods. They understand why a mathematical idea is 

important and the kinds of contexts in which is it useful. Such students have organized 

their knowledge into a coherent whole, which enables them to learn new ideas by 

connecting those ideas to what they already know” (NRC, 2001, p. 118). 

Formal definition of continuity – The definition of continuity that involves the 

limit of a function and the value of a function being equal at a given point included the 

use of limit and function notation and implies a more rigorous definition than natural 

continuity (Núñez et al., 1999). 

 Instrument – An instrument represents the combination of an artifact and the 

mental schemes a user develops while using the artifact to perform a specific task 

(Drijvers & Trouché, 2008). 

 Instrumental approach theory - Concerns the use of artifacts, a material or 

abstract ‘tool’ that can be used to sustain a certain activity or problem situation, and the 
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development of schemes by a user for employing the artifact.  During this process, the 

artifact develops into an instrument whose use becomes second nature to the user 

(Drijvers & Trouché, 2008, p. 368).   

 Maplet - A Maplet is a computer applet designed using the computer software 

Maple.  Maplets use an interactive graphic user interface to provide typical examples and 

exercises on topics in single variable calculus.  Individual Maplets are designed to focus 

on a particular concept or topic to encourage understanding and procedural skill (Meade 

& Yasskin, 2008, March). 

 Maplets for Calculus – The collective set of over 140 Maplets designed to provide 

exercises for topics of single variable calculus (Meade & Yasskin, 2012, March). 

 Natural continuity – Continuity defined by intuitively thinking of a function 

without gaps, jumps, or holes (Núñez et al., 1999). 

Procedural knowledge – Procedural knowledge: “consists of rules or procedures 

for solving mathematical problems.  Many of the procedures that students possess are 

probably chains of prescriptions for manipulating symbols” (Hiebert & Lefevre, 1986, 

pp. 7-8). 

Proceptual-symbolic world – Part of Tall’s Three Worlds of mathematics theory.  

The symbolic world (abbreviated title) “grows out of the embodied world through action 

(such as counting) and is symbolized as thinkable concepts (such as number) that 

function both as processes to do and concepts to think about (procepts)” (Tall, 2008, p. 

7).   Key to this world is the use of mathematical symbols that can represent a process to 

be carried out, or the concept that process represents (Tall, 2008). 
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Three Worlds of mathematics theory - A framework to represent the transition in 

thinking from “school mathematics” (elementary and secondary school) to “pure” or 

“formal” mathematics represented axiomatic systems and mathematical proof (university 

and research level) (Tall, 2008). 

Think aloud method – Think aloud method is characterized by asking a subject to 

think (talk) out loud while engaged in a problem solving exercise.  What they say is 

recorded and used as data for analysis.  It is used to gain insight to the cognitive process 

of a subject during the problems solving task (van Someren et al., 1994, pp. 1-2). 

Think aloud protocols – The transcribed verbalizations of subjects obtained after 

using the think aloud method. (van Someren et al., 1994) 

Tool – A tool may either be a physical object, such as a hammer, calculator, or 

computer, or it may be a non-physical cognitive tool such, such as a letters, equations, or 

language (Vygotsky, 1930/1985). 

Utilization scheme - “A mental scheme that involves the global solution strategy, 

the technical means that the artifact offers, and the mathematical concepts that underpin 

the strategy.”  This definition is used in the context of solving mathematics problems 

with a tool, which in this study is applet technology (Drijvers & Trouché, 2008, p. 369). 

Verbal cues – Verbal statements, fragments, or utterances of subjects that may be 

used to determine underlying cognitive processes (van Someren et al., 1994). 

Significance of the Study 

 This study is significant for high school and college instructors, software 

developers, researchers investigating the use of technology for building understanding, 

and researchers investigating learners’ understanding of mathematics. 
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 This study has implication for mathematics teachers both at the high school and 

college levels. Technology is a tool that if used strategically can help educators teach 

math for understanding, as called for by the CCSSM.  Tablets, notebook computers, and 

smart phones are all technologies that can support applet use.  In order to effectively and 

strategically harness the potential these devices offer for mathematics classes, instructors 

can use the findings regarding the features found to promote understanding when 

evaluating and selecting applets for use in their mathematics classes. For example, based 

on the findings of this study, a teacher may consider selecting applets that allow students 

to check their answers and change incorrect responses.  The successful strategies that 

students employed while using Maplets can help teachers specifically with regard to the 

CCSSM Standard for Mathematical Practice number 5 (Use appropriate tools 

strategically).  This knowledge can inform the guidance given to students by their 

teachers when introducing applet technologies, and for giving advice to students using 

applets during class sessions.  For example: the findings of this study suggest students 

who read and followed the directions and prompts given by the applets saw an increase in 

their understanding of continuity concepts. 

 This study also has important implications for the developers and innovators of 

mathematics education software, as the documented knowledge of features of applet 

technology leading to increased understanding for mathematics concepts provides a guide 

for improving current applets and in the development of new ones, comparable to the 

work of Jacobse and Harskamp’s (2009) whose investigation showing that cognitive hints 

included in one particular computerized learning environment increased elementary 

students’ performance in solving word problems.  Findings from this study also suggest 
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features that appear to be worthwhile to developers, may provide little evidence of 

effectiveness when used by students or teachers.    The findings regarding the 

presentation and variety of exercises included in applets can inform software developers 

of the importance of these ‘subtle’ features. 

 Researchers investigating the use of technology benefit from this systematic 

investigation of applet technology; it fills a documented need by the mathematics 

education community.  Researchers have raised concern for the proliferation of 

technology, programs, and money spent on software prior to its proper evaluation and 

documented effectiveness in classroom use (Zbiek, 2003; Epper & Baker, 2009).  Others 

have raised concerns for studies that use technology as a before and after treatment 

without delving into how students use technology and the impact it has on their 

understanding of mathematics (Zbiek, Heid, Blume, & Dick, 2007; Drijvers et al., 2007).  

This work helps fill both needs, as well as providing guidance to the methods used in 

future research considering other software and different populations of students.  In 

documenting schemes developed by students as they used applet technology, this 

research moves the knowledge base established by Drijvers and Trouché (2008) by 

providing results tied to the instrumental approach. 

 This work benefits researchers investigating learners’ understanding of 

mathematics by providing model for documenting understanding of the concepts of 

continuity using Tall’s (2008) Three Worlds framework.  The methods presented for 

building this model and its use for determining student understanding can be used by 

researchers considering the development of understanding of mathematical concepts 

other than continuity.  
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Delimitations 

 This study sought to determine the properties of computer applets, and the actions 

of student users, as they used these technologies, and the contributions the properties had 

to the increase of students’ understanding of mathematical concepts.  In this particular 

study, the properties of Maplets that foster greater understanding of the concept of 

continuity of a function were the focus.   The results of this investigation can only be 

applied to the Maplets used in this study and the individual subjects using them.  Any 

generalization to other technologies or software packages cannot be assumed.  Likewise, 

given the limited number of subjects in this case study, any documented changes in 

understanding are limited to the particular subjects of this study, and hence, may not be 

generalized to other populations. 
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II. Literature Review 

 

Introduction 

 This study sought to determine the properties of applets and the actions of 

students while using applets that foster the development of conceptual understanding for 

mathematics, by considering the following objectives: 

1. Determine the particular characteristics of the Maplets for Calculus applets 

that promote student understanding of the mathematical concept of continuity 

of a function. 

2. Determine the particular actions and strategies a student develops while using 

the Maplets, which promote the understanding of continuity. 

Questions guiding this investigation included: 

1. The Maplets for Calculus that present continuity exercises include interactive 

graphics, hints, “check” answer, and other features.  To what degree does each 

of these features help promote conceptual understanding of continuity with 

respect to Tall’s Three Worlds (embodied, symbolic, and formal)? 

2. Maplets on continuity also allow students to use multiple features 

simultaneously.  Are there particular combinations of features, e.g. utilization 

schemes, students develop that lead to a more ‘formal’ understanding of 

continuity?  Are there utilization schemes that inhibit understanding of 

continuity?   
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3. In addition to the computer and Maplet software, students were allowed the 

use of paper, pencil, and a calculator. Are there any other patterns of behavior 

or thought that students exhibit while engaged with the Maplets that 

promote/inhibit the development of conceptual understanding?   

 The review of the research literature and scholarship relevant to this study will 

begin with a brief historical outline of United States mathematics educators and 

researchers work emphasizing the importance of mathematics teaching to focus on the 

understanding of concepts, not just proficiency with computation and procedures.  Next, 

a section reviews studies and reports on technology, applets, and mobile technology that 

call for the inclusion of technology in the teaching of mathematics as well as examples of 

research considering applets and mobile technologies that informed this study.  Specific 

to the conceptual framework on which this study is ground, a review of the instrumental 

approach and the use of this theory for investigating the relationship between technology 

and the users of technology in learning mathematics will then be presented.  Think aloud 

methodology, its development as a research tool and investigations using this method will 

also be presented.  Finally, since developing methods for evaluating a level of 

understanding of continuity was a goal of this study, research about mathematical 

understanding and continuity will be reviewed. 

A History of Mathematics Educators Focusing on Understanding 

During the twentieth century, the meaning of successful mathematics learning 

underwent several shifts in response to changes in both society and schooling.  

For roughly the first half of the century, success in learning the mathematics from 

pre-kindergarten to eighth grade usually meant facility in using the computational 
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procedures of arithmetic, with many educators emphasizing the need for skilled 

performance and others emphasizing the need for students to learn procedures 

with understanding (NRC, 2001, p. 115). 

The work of W. A. Brownell is often credited for leading this call for teaching 

understanding of mathematical concepts behind the procedures (i.e. NRC, 2001).  His 

1929 work included a case study which documented work with four students (ages 7 – 

10) identified by their teachers as having ‘special difficulty’ (p. 100) in arithmetic.  

Intelligence test classified the children in the ‘normal’ to ‘above normal’ (86 – 141), yet 

evaluation using Pittsburg Arithmetic Scale, Form A determined their ‘arithmetic age’ to 

be one to three years below their chronological age.  As intervention, Brownell and his 

team met with each student 30 – 45 minutes daily and devised learning activities for 

arithmetic that emphasized “systemization, recognition of relationships, and 

generalization” (p. 105).  This approach opposed popular classroom approaches that 

emphasized ‘drill and practice’ for learning arithmetic.  While Brownell was careful to 

point out that this experiment ended before “the most desirable degree of improvement 

had been attained” (p 103), final evaluation of the students using the Pittsburg Arithmetic 

Scale saw students improve their ‘arithmetic age’ by one to two years.   

 Thiele’s (1938) work provided evidence that addition facts were learned better by 

children who developed relationships with numbers.  In this experiment, one group of 

students were given a specific set of addition facts and prompted to discover for 

themselves generalizations about numbers and operations.  This experimental group was 

compared with students who engage in repetitive drill of addition facts.  The students 
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who developed generalizations performed better on tests of math facts than those who 

learned by drill. 

 Brownell’s 1938 review of studies considered the readiness of children to learn 

arithmetic.  Citing work by Ballard (1912), Taylor (1916), Wilson (1930), and Benezet 

(1935), Brownell stated that young children (age 7 or less) are “incapable of learning 

(they are unready to learn) abstract arithmetic when presented through the usual 

mechanical drill techniques and devices.   On the other hand...primary-grade children can 

learn (are ready for) much arithmetic when that arithmetic is met incidentally and 

informally...” (p. 348-349) and suggested arithmetic curriculum be rearranged so that 

‘abstract’ approaches (i.e. drill) be reserved for later grades and replaced with approaches 

emphasizing “concrete numbers experiences for children in the first grades” (p. 351).  

Brownell offered Wilson’s “social uses of number” and Thiele’s (1935) “understanding 

of arithmetic” as theory upon which this curriculum could be constructed. 

 Brownell (1947) later defined and defended teaching for understanding in the 

context of arithmetic by stating: 

From the standpoint of the pupil meaningful arithmetic [emphasis added] -  

1. Gives assurance of retention.  

2. Equips him with the means to rehabilitate quickly skills that are temporarily 

weak.  

3. Increases the likelihood that arithmetical ideas and skills will be used.  

4. Contributes to ease of learning by providing a sound foundation and 

transferable understandings.  

5. Reduces the amount of repetitive practice necessary to complete learning.  
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6. Safeguards him from answers that are mathematically absurd.  

7. Encourages learning by problem-solving in place of unintelligent memorization 

and practice.  

8. Provides him with a versatility of attack which enables him to substitute 

equally effective procedures for procedures normally used but not available at the 

time.  

9. Makes him relatively independent so that he faces new quantitative situations 

with confidence.  

10. Presents the subject in a way which makes it worthy of respect. (pp. 263-264) 

 The “New Math” movement of the 1950s and 1960s further emphasized the 

learning of mathematics in terms of understanding the structure of mathematics and 

relational connections (NRC, 2001, p 115).  According to Klein (2003), “the New Math 

groups introduced curricula that emphasized coherent logical explanations for the 

mathematical procedures taught in the schools.”  Influential during this time was Jerome 

Bruner’s (1960) work, The Process of Education, which emphasized that educational 

experiences should result in understanding, not just performance.  Understanding, to 

Bruner, included the placement of facts and ideas within a structure of knowledge and the 

ability to point to such items exemplars of broader concepts and principles.  Bruner’s 

claim that “any subject can be taught effectively in some intellectually honest form to any 

child at any stage of development” (p. 33) is based on teaching based in logic and 

understanding.  However, researchers point that the New Math curriculum relied too 

heavily on these logical structures and understanding, to the detriment of basic skills 

(Klein, 2003; Hekimoglu & Sloan, 2005).   
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 In reaction to this, the ‘Back to Basics’ movement of the 1970s returned the focus 

of mathematical instruction to basic skills, particularly computational and procedural 

skills (Hekimoglu & Sloan, 2005).  Skemp (1971) challenged this movement in laying 

blame for the widespread negative attitude towards mathematics being a result of 

teaching mathematics without understanding.  In later work, Skemp (1977) named two 

types of mathematical understanding: instrumental understanding and relational 

understanding.  Instrumental understanding regarded the learning of rules and the ability 

to use them without understanding the mathematics concepts underlying them; and 

relational understanding considered both the ability to use mathematical rules and the 

understanding for the concepts and reasons for which the rules were being applied. 

 In 1980, the NCTM released An Agenda for Action: Recommendations for School 

Mathematics of the 1980s.  In this report, the NCTM described a set of eight 

recommendations for guiding the teaching of mathematics.  The second recommendation 

called for redefining what ‘basic skills’ in mathematics education represent: 

There must be an acceptance of the full spectrum of basic skills and recognition 

that there is a wide variety of such skills beyond the mere computational if we are 

to design a basic skills component of the curriculum that enhances rather than 

undermines education...Some groups narrowly limit [basic skills] to routine 

computation at the expense of understanding, applications, and problem solving. 

This would leave little hope of developing the functionally competent student that 

all desire (NCTM, 1980). 

This recommendation outlined the skills to be considered basic (problem solving, 

estimating, measurement, etc.) and also listed activities that should receive greater 
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classroom emphasis (i.e. mental estimation of computations, using technological aids to 

calculate) and a list of activities that should be de-emphasized (i.e. isolated drill with 

numbers separate from problem context).  The final point in this recommendation called 

for the following action: 

The higher-order mental processes of logical reasoning, information processing, 

and decision making should be considered basic to the application of 

mathematics. Mathematics curricula and teachers should set as objectives the 

development of logical processes, concepts, and language (NCTM, 1980). 

 The call for a balance of computational/procedural skills along with 

understanding outlined by the Agenda for Action would be further supported by work of 

Hiebert and Lefevre (1986).  The terms conceptual knowledge and procedural knowledge 

are attributed to them (Star, 2005).  Procedural knowledge refers to the rules, steps, or 

procedures for solving mathematical problems (Hiebert & Lefevre, 1986, p. 8).  

Conceptual knowledge emphasizes the connection and relationship between ideas in 

mathematics (p. 3-4) and includes the abilities to reason and communicate knowledge 

(Davis & Barnard, 2000).  Hiebert and Lefevre (1986) indicate that the distinction 

between procedural and conceptual knowledge is a distinction between skill and 

understanding, and that knowledge of symbols and procedures does not equate to 

‘knowledge of meaning’ (p. 6).  They go on to state that, “mathematical knowledge in its 

fullest sense includes relationships between procedural and conceptual knowledge” (p. 9).  

Hiebert’s later works included statements regarding understanding based on structure, 

similar to Bruner’s ideals, such as: “we understand something if we see how it is related 

or connected to other things we know” (Hiebert & Carpenter, 1992); and “understanding 
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should be the most fundamental goal of mathematics instruction, the goal upon which all 

other depend” [emphasis added] (Hiebert et al., 1997, p. 2). 

 In 1989, the NCTM presented their Curriculum and Evaluation Standards for 

School Mathematics (Standards).  This document presented curriculum standards for 

what math students should know from kindergarten to twelfth grade as well as standards 

for assessing students and school math programs.  The K-12 standards are divided into 

standards for grades K-4 (13 standards), 5-8 (13 standards), and 9-12 (14 standards).  The 

fourth standard for each strand is labeled Mathematical Connections. In the introduction 

to the document, the NCTM noted this because:  

This label emphasizes our belief that although it is often necessary to teach 

specific concepts and procedures, mathematics must be approached as a whole. 

Concepts, procedures, and intellectual processes are interrelated. In a significant 

sense, "the whole is greater than the sum of its parts." Thus, the curriculum should 

include deliberate attempts, through specific instructional activities, to connect 

ideas and procedures both among different mathematical topics and with other 

content areas (NCTM, 1989). 

The NCTM continued this call for focus on teaching mathematics with understanding 

with its 2000 publication Principles and Standards for School Mathematics (PSSM) 

(considered in the introductory chapter of this paper). 

 The National Research Council (NRC) report, Adding It Up: Helping Students 

Learn Mathematics (2001) was written for the purpose of, “attempt[ing] to address the 

conflicts in current proposals for changing school mathematics by giving a more rounded 
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portrayal of the mathematics children need to learn, how they learn it, and how it might 

be taught to them effectively” (p. xiv).  This proposal was written in part to address: 

...consistent and compelling weaknesses in the mathematical performance of U.S. 

students. State, national, and international assessments conducted over the past 30 

years indicate that, although U.S. students may not fare badly when asked to 

perform straightforward computational procedures, they tend to have a limited 

understanding of basic mathematical concepts (p. 4).   

In describing the “expertise, competence, knowledge, and facility in mathematics” (p. 5) 

students successful in mathematics possess, the term mathematical proficiency is used.  

Mathematical proficiency includes five “strands” that are intertwined: 

• conceptual understanding—comprehension of mathematical concepts, 

operations, and relations 

• procedural fluency—skill in carrying out procedures flexibly, accurately, 

efficiently, and appropriately 

• strategic competence—ability to formulate, represent, and solve mathematical 

problems 

• adaptive reasoning—capacity for logical thought, reflection, explanation, and 

justification 

• productive disposition—habitual inclination to see mathematics as sensible, 

useful, and worthwhile, coupled with a belief in diligence and one’s own efficacy 

(p. 5). 
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In presenting this definition of mathematical proficiency, the report emphasized that “the 

five strands are interwoven and interdependent in the development of proficiency in 

mathematics” (p. 116). 

 In discussing the importance of conceptual understanding to learning 

mathematics, Adding It Up makes the following points: 

 learning with understanding is more powerful than simply memorizing 

because the organization improves retention, promotes fluency, and 

facilitates learning related material 

 having a deep understanding requires that learners connect pieces of 

knowledge, and that connection in turn is a key factor in whether they can 

use what they know productively in solving problems 

 when students have acquired conceptual understanding in an area of 

mathematics, they see the connections among concepts and procedures 

and can give arguments to explain why some facts are consequences of 

others 

 conceptual understanding frequently results in students having less to 

learn because they can see the deeper similarities between superficially 

unrelated situations (NRC, 2001, p. 118-120). 

In the concluding remarks in the chapter describing mathematic proficiency, the NRC 

states that “many people in the United States consider procedural fluency to be the heart 

of the elementary school mathematics curriculum” (p. 144) and ends with this 

acknowledgement: 



www.manaraa.com

 

31 

 

We conclude that during the past 25 years mathematics instruction in U.S. schools 

has not sufficiently developed mathematical proficiency in the sense we have 

defined it. It has developed some procedural fluency, but it clearly has not helped 

students develop the other strands very far, nor has it helped them connect the 

strands. Consequently, all strands have suffered (p. 145).  

 Both the NRC Adding It Up (2001) and the NCTM Principles and Standards 

(2000) are cited in the Common Core State Standards for Mathematics (CCSSM) 

(CCSSO/NGA, 2010) (considered in the introductory chapter of this paper).  Daro, 

McCallum, and Zimba (2010), members of the CCSSM working group, stated the 

CCSSM delineate both skills to master and concepts to understand.  They also 

commented that “conceptual understanding intertwines with procedural skill to develop 

mathematics achievement. To make solid progress, students need not only skills to tackle 

mathematics problems, but also the mathematical concepts that give coherence and 

substance to the subject” (p. 285). 

 This section presented a brief historic outline of the call for emphasizing the 

teaching of conceptual understanding in school mathematics.  Evidence suggesting 

teaching concepts leads to improved mathematical learning from Brownell (1935, 1947) 

and Thiele (1938) were presented as well as reports grounded in research that emphasized 

the teaching of concepts (NRC, 2000; NCTM, 1989, 1980, 1989, 2000; CCSSO/NGA 

2010).  Despite continued recommendations, reports and research proclaim that typical 

United States school math experiences continue to focus on the acquisition of procedural 

skills (i.e. Cangelosi, 2003; NRC, 2000; NCTM, 1989, 1980, 1989, 2000; CCSSO/NGA 

2010).  The work of Hiebert and Lefevre (1986) was considered for the importance the 
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constructs of conceptual knowledge and procedural knowledge as they apply to the 

teaching and learning of mathematics.  Their work is credited with giving the field of 

mathematics education terminology with which to express these ideas, as well as the 

importance of each in developing mathematical knowledge. 

Technology, Applets, and Mobile Technologies 

 The NCTM Agenda for Action called for “mathematics programs take full 

advantage of the power of calculators and computers at all grade levels” (1980).  In 

developing the Principles and Standards for School Mathematics the NCTM included as 

one of its five ‘principles’ The Technology Principle that begins by stating: “Technology 

is essential in teaching and learning mathematics; it influences the mathematics that is 

taught and enhances students' learning” (2000).  In 2010, the NGA/CSSO wrote the 

Common Core State Standards for Mathematics to include the use of technology within 

the standards without the need for a special statement – the assumption being technology 

is available for student use.  The challenge now is that access to technological tools is 

easier and software development moves more quickly than our ability to evaluate how to 

use these tools effectively (Fey, Hollenbeck, & Wray, 2010).  As Zbiek (2003) wrote in 

regard to the proliferation of computer algebra systems (CAS), “CAS research has lagged 

behind the implementation of CAS projects.  As a result, the emerging pool of research is 

minimal and fractured” (p. 197). 

The wide range of [technological] tools available for...mathematics learning 

include tools for data collection and visualization, modeling programs, simulation 

programs, multi-user virtual environments, online search tools, communication 

technologies, course management tools, handheld mobile technologies, 
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probeware, dynamic geometry software, calculators, interactive whiteboards, 

virtual manipulatives, and online publishing (Dani & Koenig, 2008; Heid, 2005; 

Wofford, 2009). [in Donnelly & Mikusa, 2010] 

In this environment of exponential growth in technology, applets have found a particular 

favor.  Applets are software applications executed in the context of another program.  

Applets are very flexible and can be used on a variety of technologies, including 

computers, smart-phones, and tablet technologies.  Two properties that make applets 

appealing for use in education settings are visualization and manipulation.  Graphics can 

be built into applets that bring concepts to students in a visual medium.  Manipulation of 

variables, inputs, graphics, etc. can also help students understand concepts (Trigo, 

Olguin, & Matiai, 2010). 

 D. Young (2006) described some benefits for the use of applets in mathematics 

education, including: (1) they are easily availability on the internet; (2) their focus on 

specific concepts; (3) applets allow students to engage with math in ways that are 

impossible with physical manipulatives; (4) applets provide instantaneous and corrective 

feedback; (5) applets allow for multiple representations of mathematical ideas; (6) they 

may be helpful for students with disabilities; and (7) applets increase motivation and 

attention in students and teachers.  

 Studies reviewed regarding applet use in teaching mathematics include: 

 Doorman, Drijvers, Gravemeijer, Boon, and Reed (2012) investigation into the 

conceptual development of functions using the computer applet, AlgebraArrows, 

determined that the representations of the applet led students to increased levels of 

understanding of functions. 
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 Ke (2008) used math applets, a series of games called ASTRA EAGLE, during a 

summer math camp.  Results indicated improved student attitude toward 

mathematics and increased mathematical engagement of students using ‘situated 

learning’ applets (problems embedded within a storyline). 

 Hoffkamp’s (2010) investigation included the use of two applets to determine the 

development of understanding of concepts regarding the fundamental theory of 

calculus and properties of functions.  In this study, Hoffkamp used the phrase 

interactive visualization to denoted functions of applets that allowed students to 

manipulate the visual representations presented; a trait that allowed for the 

development of greater understanding of the mathematical concepts considered in 

the study. 

 Heck, Boon, Bokhove, and Koolstra (2007) described the GALIOS project in 

which the authors were involved in developing and implementing applets in 

school settings to teach concepts of algebra and calculus in secondary schools.  

Findings included: increased student motivation; ability to address individual 

student needs; interactive and dynamic features promote understanding of 

concepts; and the development of student creativity with math. 

 Studies considered that investigated the use of ‘mobile’ technologies, included: 

 Franklin and Peng (2008) presented a case study in which middle school students 

used and iPod Touch learning the algebra concepts.  Using this technology, 

students made videos to represent math concepts.  The authors noted one benefit 

of using this technology was the ability to continue math learning outside of the 

classroom. 
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 Dahar (2009) investigated students’ perceptions in learning mathematics while 

using mobile phones versus using applets on a computer.  Findings included 

student preference for using mobile phones based on its size (portability) and 

communication capability. 

 Stickel and Hum (2008) presented findings from the introduction of ‘tablets’ into 

their college classrooms.  PowerPoint presentations embedded with animations, 

figures, and videos were the primary method for instruction delivery in the 

investigators’ differential equations and linear algebra (Stickel) and 

electromagnetics (Hum) courses.  Student surveys indicated that there may be a 

correlation between learning style and the effectiveness of using tablet technology 

in learning. 

 Another study reviewed was Garrett’s (2010) dissertation investigating how the 

use of mathematics technology affects the internal mathematical representations 

possessed by adult developmental mathematics students (p. ii).  In this study, Garrett used 

a teaching experiment that included written and computer exercises with Geometer’s 

Sketchpad software to determine the students’ internal representations for the concept of 

functions. 

 This section informs the research of this investigation by documenting the need 

for investigating technologies being used in mathematics education.  As noted by the 

NCTM (1989, 2000) and the NGA/CSSO (2010), technology is necessary for the 

teaching and learning of mathematics and the availability of technological tools is now 

assumed.  However, Fey et al. (2010) and Zbiek (2003) are among the researchers that 

call for the need to investigate new technologies as their development and 
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implementation outpace the investigation of their effectiveness.  Work by Trigo, Olguin, 

& Matai (2010) and Young (2006) highlighted some of the characteristics of applets and 

the benefits of using them for teaching and learning mathematics.  This section concluded 

with a small sample of research that is representative of the nature of investigations that 

have been conducted using applets and various mobile technologies. 

Instrumental Approach Framework 

 The genesis of the instrumental approach is attributed to L.S. Vygotsky’s 1930 

talk introducing “the instrumental method in psychology” (Wertsch, 2002; Drijvers & 

Trouché, 2008).  He offered that, “by being included in the process of behavior, the 

psychological tool alters the entire flow and structure of mental functions.  It does this by 

determining the structure of a new instrumental act, just as a technical tool alters the 

process of a natural adaptation by determining the form of labor operations” (Vygotsky, 

1981, p. 137).  The psychological tool referred to in this passage was natural language, 

however, he further implied this designation applies to “various systems of counting; 

mnemonic techniques; algebra symbol systems; works of art; writing; schemes; diagrams, 

maps, and mechanical drawings; all sorts of conventional signs; and so on” (p. 137), thus 

to Vygotsky, tools can be comprised of either psychological or physical.  The 

“instrumental act” includes a problem that needs solving, the mental process for solving, 

and the (psychological) tools used during this procedure; hence a tool only becomes an 

instrument in the act/process of being used.  Note that to Vygotsky, the tool being used 

can alter the mental structure/function as the user constructs ways in which the tool may 

be applied to a given situation. 
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 Rabardel and colleagues elaborated Vygotsky’s ideas by distinguishing artifacts 

from instruments (Rabardel, 2002; Vérillon & Rabardel, 1995).  Rabardel designated an 

artifact as the “bare tool”, either a material or abstract object, available to a person for the 

purpose of sustaining a particular type of activity, but may be rendered useless without 

the knowledge of the type of tasks the artifact can be used for, or the ways in which the 

artifact may be applied to a giving situation.  When the user becomes aware of how the 

artifact may be applied and used to a given task, and once the user develops the means of 

using the artifact, then the artifact becomes an instrument. 

 Drijvers and Trouché (2008) extended Rabardel’s ideas to describe an instrument 

as follows: 

Following Rabardel, we speak of an instrument when there exists a meaningful 

relationship between the artifact and the user for dealing with a certain type of 

task – in our case a mathematical task – which the user has intended to solve.  As 

the interaction between the user and artifact requires mental processes, we see that 

the main “players” here, the mental processes of the user, the artifact, and the 

task, are the same as was the case for Vygotsky’s previously described 

instrumental act.  Particularly for mathematical tools, which can be considered 

“extensions of the mind” rather than extensions of the body, these mental 

processes are essential.  Therefore, the instrument consists of both the artifact and 

the accompanying mental schemes that the user develops to use it for performing 

specific kinds of tasks (p. 367). 

Drijvers and Trouché summarize their definition of instrument in two ways, with the 

equation: “Instrument = Artifact + Scheme” for a particular task; and by further 
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emphasizing that an “artifact develops into an instrument only in combination with the 

development of mental schemes” (p. 368). 

 Instrumental genesis refers to the process by which an artifact becomes an 

instrument.  This process requires the user to develop mental schemes involving knowing 

how to use the artifact appropriately and understanding for which circumstances the 

artifact is useful.  Instrumental genesis, and hence the instrumental approach, considers 

the interaction between the user and the artifact.  Instrumentation concerns the effect the 

artifact has on the user’s thinking: “the possibilities and constraints of the artifact shape 

the techniques and the conceptual understanding of the user” (p. 368-9).  

Instrumentalization refers to how the artifact is shaped by the user: “the conceptions and 

preferences of the user change the ways in which he or she uses the artifact, and may 

even lead to changing or customizing it” (p. 369).  Instrumentation and 

instrumentalization is a bidirectional interaction in which a student’s thinking is shaped 

by an artifact, but that thinking also shapes the artifact (Hoyles & Noss, 2003). 

 At the heart of instrumental genesis is the development of mental schemes.  These 

schemes organize problem-solving strategies, including relevant concepts that form the 

basis of such strategies.  Drijvers & Trouché consider a utilization scheme, in the context 

of solving mathematics problems with a tool, as: “a mental scheme that involves the 

global solution strategy, the technical means that the artifact offers, and the mathematical 

concepts that underpin the strategy” (p. 369).  They distinguish between two types of 

utilization schemes, usage schemes and instrumented action schemes.  Usage schemes are 

elementary schemes and are often direct functions of the artifact.  An example may be 

using a graphing function on a calculator.  Usage schemes are the building blocks for 
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higher order schemes, instrumented action schemes.  Instrumented action schemes are 

built from utilization schemes through the instrumental genesis.  Goldberg (1988) offered 

an example of such an instrumental action scheme in describing the mental process 

involved in changing the viewing window on a graphing calculator.  While the technical 

skill and input required are not overly difficult, the corresponding mental schemes needed 

to understand that the viewing window represents only part of the graph and the ability to 

determine the appropriate viewing area for a given problem/exercise requires schemes of 

higher-order.  “In the case of mathematical information technology tools, the conceptual 

part of utilization schemes therefore includes both mathematical objects and insight into 

the ‘mathematics behind the machine.’  As a consequence, seemingly technical obstacles 

that students experience while using a computerized environment for mathematics often 

turn out to have an important conceptual background” (Drijvers & Trouché, 2008, p. 

371).   

A number of researchers have invoked the instrumental approach as the 

framework for their investigations into the use of technology for learning mathematics.  

Haspekian (2003) offered an instrumental approach toward investigating building 

relationships between arithmetic and algebra via the use of spreadsheets.  Hollebrands, 

Laborde, and Sträβer (2008) surveyed a number of studies that investigated the 

instrumentation of the “drag” operation in interactive geometry software.  They cited 

studies into the ways students used the “drag” operation including the work of Arzarello, 

Micheletti, Olivero, Robutti, Paola, and Gallino (1998), Arzarello, Olivero, Paola, and 

Robutti (2002), Olivero (2002), Olivero and Robutti (2002), and Smith (2002).  

Hollebrands et al. (2008) also cited work of Holzl (1995 and 1996) documenting shifts in 
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student schemes for using the “drag” function from wandering toward a more purposeful 

use of constructing hypotheses; and the work of Talmon and Yerushalmy (2004) in using 

“dragging” to make predictions.  Doorman, Drijvers, Gravemeijer, Boon, and Reed 

(2012) used aspects of tool and instrumentation theory to frame their investigation into 

the conceptual development of functions using the computer applet, AlgebraArrows.  

Their results suggested that the “relationship between tool use and conceptual 

development benefited from tools offering representations that allow for a progressively 

increasing levels of reasoning” (p. 1). 

One study that outlines the relevance of the instrumental approach to this study 

comes from Drijvers (2003).  He utilized an instrumental approach for investigating how 

the use computer algebra systems (CAS) promoted the understanding of the mathematical 

concept of parameter.  This research included observing students solving a problem 

involving a parameter while using a TI-89 symbolic calculator, a handheld device that 

offers graphing capabilities as well as symbolic manipulation.  The exercise offered 

students a set of graphs for the quadratic y = x
2
 + b x + 1 and required students to express 

the coordinates of the extreme value for a given “family member” determined by the 

variable b.  In discussing the observations made while watching one student use the 

calculator and analyzing their written result, Drijvers was able to identify: the artifact as 

the algebraic application within the TI-89; the instrumented action as solving the 

parametric equation using the artifact; the elementary usage schemes of using the “solve” 

command and use of a formula for the graph of a quadratic; and the instrumental action 

scheme as the combination of the technical ability and the conceptual components needed 

to complete the task.  He concludes that the instrumental genesis of the scheme for the 
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application of the “solve” command in the CAS interacted with several aspects of the 

student’s understanding of parametric equations.  These interfered with each other, and 

the resulting conflict resulted in a co-development (of schema for applying the command 

and solving parametric equations) during the instrumental genesis that forced the student 

to extend her conception of solving parametric equations. 

This section outlined the development of the instrumental approach as an 

accepted framework for investigations concerning the use of technology by students for 

learning mathematics.  Drijvers and Trouché’s (2008) work outlining the theory as it 

related to individual student learning is of particular importance to this study, as their 

vision emphasizes the development of schemes users create while engaged with 

technology.  Drijvers’ (2003) study informs this research by providing an example for 

understanding the relationship between students, technology, and how the process of 

instrumental genesis can lead to greater understanding of a mathematical concept.    

Think Aloud Method  

 The development of the think aloud method has been traced to the early 1900’s 

psychological practice of introspection (Crutcher, 1994; van Someren, Barnard, & 

Sandberg, 1994; Ericsson & Simon, 1980). Introspection practices involved training 

participants to interpret their own thinking and report their observations, verbally, to 

specialists (psychologists) to record and interpret these reports.  Some psychologists 

claimed these records represented cognitive thoughts that could be used as data (i.e. 

Tichener, 1929).  However, other psychologist questioned the chain between the subjects’ 

thoughts, the subjects’ process of interpreting and verbalizing their thoughts, and using 

the specialists’ record as cognitive data to be analyzed, thus questioning the validity of 
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the introspection method (i.e. Lashley, 1923).  Later, some researchers modified this 

method to emphasize reporting thoughts as opposed to reporting the interpretations of 

those thoughts.  For example, Dewey asked subjects to report their thoughts, not their 

interpretation of them, just a recollection of their thoughts retrospectively after recent 

thinking episodes (Aanstoos, 1985; Ericsson & Crutcher, 1991).  Concerns for the 

validity of this method focus on the lapse in time between the thinking episode and the 

report of thoughts, as the verbal reports were open to the subjects’ interpretation of the 

thinking.   

 Newell and Simon’s (1972) research into problem-solving led to further 

development of the think aloud method.  By using the verbalizations of subjects involved 

in a task and computer models of problem solving processes, they were able to construct 

detailed models of the human problem solving process.  This work was influential to the 

use of verbal reports in research, as Newell and Simon were able to explain protocol data 

from a theory of human memory and assumptions about the knowledge subjects were 

able to invoke while involved in problems solving.  (van Someren, Barnard, & Sanberg, 

1994, p. 31) 

 Ericsson and Simon (1980, 1984) are often credited formally proposing and 

defending the think aloud method as a means for collecting and analyzing verbal data 

(Crutcher, 1994; K.A. Young, 2005).  Using human-information processing theory as a 

framework, they contended that only information in short term memory is accessible to a 

subject without changing thought processes; because of this, thoughts accessed while a 

subject is engaged in mental activities incumbent on the use of short term memory, i.e. 

problem solving tasks.  Ericsson and Simon posed that a subjects’ unencumbered 
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verbalizations of their thoughts while involved in a task, all of which occurs in short term 

memory, precludes a subject from interpreting their thinking.  Procedure for collecting 

data, as outlined by van Someren, Barnard, and Sanberg (1994), involve minimal 

observer intrusion.  Subjects are given instructions to the task they will be expected to 

perform and then instructed to say out loud what comes to mind as they engage with the 

task.  Should a subject go quiet during the process, the observer’s prompt should be a 

short, non-leading phrase such as “keep talking”, as opposed to a question like “what are 

you thinking?” to which a subject may stop and offer a reflection or interpretation (p. 42-

43).  

K. A. Young (2005) believes that think aloud data can be especially beneficial to 

research that examines student learning in a technological environment.  As an example, 

Young cited her own investigation aiming to identify the types of learning taking place 

while working in a web-based environment.  During this investigation, she asked the 

students, all in Grade 5 (Australia), to think aloud as they used a search engine (Google) 

to answer a student generated research question.  One example provided involved a 

participant named Liz investigating her own question about the history of field hockey.  

Young transcribed the audio and synchronized it to concurrent observations from the 

video recording.  In analyzing these data, Young was able to determine strategies the 

students developed, their use of knowledge in entering keywords into Google or the 

decision to enter particular websites suggested, and limitations of the search engine for 

finding specific information.   

Perrenet and Kaasenbrood (2006) used think aloud methodology to investigate the 

level of understanding of the concept of algorithm with computer science students.  They 



www.manaraa.com

 

44 

 

used this qualitative study, in part, to validate results of a previous quantitative study that 

defined four levels of abstraction for the concepts related to the study of algorithms 

(Perrenet, Groote, & Kaasenbrood, 2005).  In this study, computer science students were 

given a questionnaire about six concepts related to algorithms (i.e. the complexity of a 

problem is independent the choice of algorithm used to solve it) and asked to respond, in 

writing, while thinking aloud.  The investigators goal here was to investigate the extent 

students really understood the computer science terms they listed in their written 

responses.  Both the written and transcribed think aloud responses of participants were 

evaluated to determine their level of understanding of both the concept being asked on 

the questionnaire and their use of specific computer science terms.  Their results 

emphasized that most students’ responses indicated understanding of the computer 

science terms being used in their responses and intermediate levels of understanding for 

the concepts related to algorithms. 

Ke (2008) employed the think aloud method in a mixed-method case study of 

fifteen 4
th

-5
th

 grade students using a series of computer games designed to reinforce 

mathematics standards in Pennsylvania.  Ke’s case study involved observing students 

using five different computer games, in a series of games called ASTRA EAGLE, during 

a five-week summer math camp.  The researcher’s goal was to assess how the use of 

computer games affected math achievement, meta-cognitive awareness, attitude toward 

math, and engagement.  Pre and post tests were given to assess differences in 

achievement.  Students were asked to think aloud during gaming sessions.  Observations 

records, as well as participants’ game-playing records (kept track by the computer 

program) were also collected.  Results of the observations and think aloud data indicated 
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an increase in students’ positive attitudes toward learning math, and that the games that 

involved situated learning (problem solving within a game ‘story’) engaged students 

more readily than those games without situations. 

 Another study that used think aloud methods was Jocobse and Harskamp’s (2009) 

investigation of the usefulness of working with a computer program with meta-cognitive 

hints for enhancing meta-cognitive skills and problem solving in Grade 5 students 

(Netherlands).  The computer program, developed and modified by the investigating 

team, was designed to enhance the meta-cognitive skills of users by providing word-

problems and asking users to respond with steps leading to the solution of the problem.  

Each step is support by hints, which the user could choose to view or neglect.  In 

assessing students’ meta-cognitive skills, the researchers used think aloud methods as 

part of a pre- and posttest measure.  Ten random students were selected from the 

classroom that employed the computer program as part of the instruction for solving 

word problems.  These students were asked to think aloud while writing their solution to 

a word task and the transcribed protocols reviewed by two evaluators who ranked the 

students’ meta-cognitive skill according to a schemata posed by Veenman, Kerseboom, 

and Imthorn (2000).  These scores were then analyzed using a paired-samples t-test that 

revealed that these students, who were a part of the experimental group, showed a 

significant increase in meta-cognitive skill.   

 This section informs the research proposed here by documenting the history and 

acceptance of the use of verbal data and the development of the think aloud method as 

valid tools for investigating cognitive processes.  A review of recent articles in which the 

think aloud method was employed as part of the data collection informs this study in the 
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following ways: (1) think aloud data has been used to determine levels of student 

understanding (Jacobse & Harskamp, 2009; Perrenet & Kaasenbrood, 2006); (2) this 

method has been employed in studies conducted with students engaged in a computer 

environment (Young, 2006; Ke, 2008); and (3) the use of video recording during think 

aloud data collection (Young, 2006; Jacobse & Harskamp, 2009, Ke, 2008); and (4) 

information regarding methods and procedures used for collecting and analyzing think 

aloud data. 

Hierarchy of Understanding and Continuity 

 Cottrill et al. (1996) presented Actions-Processes-Objects-Schema (APOS) theory 

as a perspective for investigating the concept of limits.  The acronym, APOS, was formed 

from their view that there are three types of mathematical knowledge: actions, processes, 

and objects, which are organized into structures or schemas.  Actions refer to physical or 

mental transformation of objects to obtain other objects.  Processes are similar to actions 

in that objects are transformed, however, the defining characteristic is that an individual 

has control over the transformation and can think and reflect on the process; whereas 

actions are reactive.  An object is constructed when an individual collectively thinks of a 

process, and the steps in the process, as its own entity.  Important here is that objects can 

be broken down to obtain the processes and that an individual can move back and forth 

between object and process concepts of a mathematical idea.  Schema is the collection of 

actions, processes, objects and other schema that are purposely linked.  A scheme itself 

can become a new object; hence processes and schemas can bear new objects that can 

motivate new actions and processes resulting in a “spiraling” iterative process. 
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 The van Hieles (1958, 1984, and 1986) described five levels of thinking for 

geometric thinking.  As interpreted by Fuys, Geddes, and Tichner (1988), these levels are 

sequential; one cannot achieve a higher level of thinking without having passed through a 

previous one. 

Level 0: The student identifies, names, compares and operates on geometric   

figures (e.g., triangles, angles, intersecting or parallel lines) according to 

their appearance. 

Level 1: The student analyzes figures in terms of their components and 

relationships among components and discovers properties/rules of a 

class of shapes empirically (e.g., by folding, measuring, using a grid or 

diagram. 

Level 2: The student logically interrelates previously discovered properties/rules 

by giving or following informal arguments. 

Level 3: The student proves theorems deductively and establishes 

interrelationships among networks of theorems. 

Level 4: The student establishes theorems in different postulational systems and 

analyzes/compares these systems (Fuys et al., 1988, p. 5). 

Hoffer (1981) further described these levels as: visualization, analysis, abstraction, 

deduction, and rigor.  The van Hieles (1958) study noted that learning is not a continuous 

process.  In their observations, students did not transition to higher levels of thinking 

smoothly but through jumps; it was these leaps that lead to the development of the 

“levels”. 
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 Drijvers’ (2003) (in the study considered in the section on instrumentation) used 

the level theory of van Hiele (1986) to study the levels of understanding of the concept of 

parameter.  Drijvers presented the framework of Figure 2.1. In this, the ground level 

represents a visual/concrete understanding of a parameter as a placeholder.  Second level 

understanding occurs when a parameter is seen as having the properties of a changing 

quantity, an unknown quantity, and/or a generalizer; at this stage of the model, parameter 

becomes an object.   Third level thinking in this model is considered when these 

properties are subjected to a logical structure and relationships between the properties are 

formed (see Figure 2.1).   Drijvers’ summarized the use of this model by stating, “In this 

study, we use van Hiele’s level theory to specify the intended level-raising of the 

understanding of the concept of parameter” (p. 71).  In addition to mapping the concept 

of parameter using van Hiele’s levels, Drijvers mentions that levels of understanding, 

particularly the formation of objects at the second level, can become the ground level for 

another concept and that this process is, “relative and iterative” (p. 71).  This observation 

suggests a connection to APOS theory. 

 

 

 

Figure 2.1 Drijvers’ levels of understanding of the concept of parameter (2003, p. 71). 
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 Tall (2008) provides a framework to represent the transition in thinking from 

“school mathematics” (elementary and secondary school) to “pure” or “formal” 

mathematics represented axiomatic systems and mathematical proof (university and 

research level).  In developing this model, Tall indicates that three mental actions shape 

learning and thinking about mathematics: (1) recognition of patterns and 

similarities/differences; (2) repetition of sequences of actions until they become 

automatic; and (3) language to describe and refine the way we think about things (p. 6).  

The process of maturing in mathematical thinking involves using recognition, repetition, 

and language to “construct three interrelated sequences of development that blend 

together to build a full range of mathematical thinking” (p. 7).  Collectively, these 

sequences were entitled “the Three Worlds of mathematics”. 

 The first of these, the concept-embodied world, is based on the perception of and 

reflection on properties of objects.  Initially sensed physically, these properties become 

part of a mental image (embodied).  It refers to the perceptual representations of 

concepts.  Tall uses van Hiele’s (1986) “levels” as the manner in which an individual 

matures in mathematical thinking in the concept-embodied world.  Growth from 

perception and description (level 0) to deduction and establishing relationships between 

theorems (level 3) can be accomplished by physical embodiment of concepts.  However, 

it is only when an individual makes the shift to working with axioms and developing 

systems based on these axioms (level 4) that full maturation to the “formal” level of 

mathematical thinking is considered. 

 The proceptual-symbolic world, “grows out of the embodied world through action 

(such as counting) and is symbolized as thinkable concepts (such as number) that 
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function both as processes to do and concepts to think about (procepts)” (Tall, 2008, p. 

7).   Key to this world is the use of mathematical symbols that can represent a process to 

be carried out, or the concept that process represents; the fusion of these two terms, 

procept, is attributed to Gray and Tall (1994).  Tall credits Cottrill et al. (1996) work on 

APOS theory as a model for the growth of mathematical thinking in the perceptual 

symbolic world.  APOS theory, as used by Tall (2008), models the compression (the 

brain’s ability to cope with multiple ideas at the same time by connecting and organizing 

multiple ideas into one concept) of concepts, highlighted by the use of symbols. APOS 

also provides context for blending embodiment and symbolism in the development in 

sophistication of mathematical thinking.   

 The axiomatic-formal world represents mathematics based on set-theoretical 

definitions of concepts.   Knowledge and properties about these concepts are represented 

by theorems (axioms) and are developed through the use of formal proof. 

 Tall’s model allows for integration between the Three Worlds.  As such, he 

contends that a path toward formal thinking is possible through the embodied world, the 

symbolic world, or a combination/interaction of these two worlds, embodied symbolic. 

(For the sake of simplicity in discussing the worlds, Tall shortened the names to 

embodied, symbolic, and formal.)  Figure 2.2 outlines the Three Worlds framework.  

Tall’s Three Worlds of mathematical thinking framework is indicated for this 

study by the work of Núñez et al. (1999) in describing the difficulty students have 

understanding the concept of continuity of functions.  Continuity can be thought of 

informally, referred to as natural continuity, as a function without breaks, jumps, or 

holes.  It can be manifested physically by the characterization that a continuous function
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is one that can be drawn without lifting a pen/pencil from the paper.  The context for this 

understanding of the limit concept is embodied cognition.  Núñez et al. describe the 

process of learning continuity in school settings as one that often begins with establishing 

natural continuity, but then introducing a formal definition for continuity (they use the 

Cauchy-Weierstrass definition) that supposedly embodies the ideas of natural continuity.  

A textbook example of this definition is: 

A function f is continuous at a number a if the following three conditions are 

satisfied: 

1. f is defined on an open interval containing a; 

2. limx


a   f(x) exists; and 

3. limx


a  f(x)= f(a) (Simmons, 1985). 

Disconnect between these two definitions, Núñez et al. contend, occurs because the two 

definitions rely on different cognitive contexts - essentially they are two different 

concepts that students have to learn (1999, p. 55).  However, in light of Tall’s Three 

 

Figure 2.2 Tall’s Three Worlds model of cognitive development of mathematics concepts. (2008, p. 
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Worlds, the symbolic nature of the ‘formal’ definition, which itself describes a process of 

determining continuity (proceptual in nature), can lead toward an interpretation that this 

is a proceptual-symbolic world understanding of the concept. 

 In an earlier study, Núñez and Lakoff (1998) described the historic foundations 

for the formal definition of continuity that relied on limits, the ε-δ definition.  Prior to the 

late nineteenth century, mathematicians such as Kepler, Leibniz, Newton, and Euler 

based continuity on the motion of a physical object with a definite direction and speed.  

Motion seen to continue without gaps or interruptions was considered to be continuous. 

They based further developments in their mathematical work using this ‘natural’ 

definition of continuity.  However, ideas that regarded functions as naturally continuous 

curves changed in the late 1800’s as mathematicians explored new concepts, which did 

not fit into the scheme of continuity generally accepted at the time.  A more formal and 

precise definition of continuity was developed to encompass all cases.  Núñez and Lakoff 

attribute this to the cultural values of the mathematics community of the time that 

emphasized “secure and rigorous” foundations using symbolic notation and logic.  Núñez 

and Lakoff (1998) and Núñez, et al. (1999) call for a return to teaching continuity using 

natural continuity definitions and descriptions. 

 Tall and Vinner (1981) described this difference as one of concept image, the 

embodied idea of continuity representing a function whose graph has no gaps, and the 

concept definition, or formal definition of continuity.  In an investigation of first year 

university students, they presented five questions/functions to students and asked them 

whether or not the function was continuous and give reasons for their answers.  In 

analyzing the written responses, it was found that most students evoked the concept 
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image of continuity that implied a ‘natural’ definition scheme.  By making instructors 

aware of these students’ concept image of continuity, Tall and Vinner suggest that 

discourse with students may resolve this cognitive conflict between natural and formal 

continuity. 

 Bezuidenhout (2001) also investigated nature and characteristics of students’ 

concept images of continuity.  In this study, fifteen students were selected to be involved 

in ‘task-based’ interviews.  These first year calculus students had been part of a larger 

study that analyzed students written results on items regarding limits and continuity.  The 

interviews were prepared for each student based on students’ answers on the written test.  

During the interviews, students were asked to explain their written answers; when 

necessary, the interviewer asked follow-up questions.  Two test items discussed during 

interviews focused on students’ conception of the formal definition of continuity.  One 

misunderstanding documented was the erroneous student belief that the existence of a 

limit at a point implies continuity at the point. Other conceptual errors discussed involved 

relationships between limits, continuity, and differentiability.  Bezuidenhout concludes 

that student understanding for continuity (as well as limits and differentiability) is 

dependent on isolated facts and procedures (in this he blames teaching approaches that 

emphasize procedures) without regard to the relationships and concepts inherent to 

continuity. 

 Chan’s (2011) master’s thesis investigated the differences in conceptual 

knowledge about continuity and derivatives between two groups of college freshmen.  

This study compared the written performance of students enrolled in an Emerging 

Scholars Program (ESP) with non-ESP students enrolled in the same calculus course.  
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Using a written assessment modified from Tall and Vinner (1981), the investigator 

devised a rubric to grade responses to each of five items for accuracy and conceptual 

understanding.  Of import to this study, Chan’s development of a conceptual 

understanding rubric (CUR), modified from the Mathematics Problem Solving Official 

Scoring Guide from the Oregon Department of Education (2008) and the Quasar General 

Rubric (Lane, 1993), credits conceptual understanding of items on a five-point scale.  An 

item assessing continuity of a piecewise function and accompanying CUR is provided in 

Figure 2.3.  The rubric reflects a combination of the levels presented by van Hiele (1986) 

and ideas of proceptual-symbolic world developments in cognitive thinking in a 

combined way.  This study also prescribed the use of items that presented the graphs of 

functions in addition to items in which students were asked to only consider the definition 

of a function in determining continuity.  Similar to Drijvers’ (2003), Chan used this scale 

to document a level of understanding (see Figure 2.3). 

 Other studies of continuity were reviewed for this investigation, including: 

Takači, Pešić, and Tartar’s (2003) investigation use of visual presentations in teaching  

about continuity using the computer program Scientific Workplace; Vela’s (2011) thesis 

investigating concept image and the concept definition of continuity in high school 

students; Ko and Knuth’s (2009) article using qualitative methods to determine the 

abilities and misunderstandings of student proofs involving continuity concepts; and 

Takači, Pešić,, and Tatar’s (2006) analysis of high school students’ theoretical and visual 

knowledge of continuity.  
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 This section documented the development of Tall’s three-worlds of mathematics 

as a lens for viewing the conceptual understanding.  APOS theory and van Hiele’s level 

theory were considered, but the fusion and extension that Tall provides applies to 

understanding the concept of continuity as indicated by Núñez et al.  Their work 

emphasized the difficulty in understanding continuity as being a cognitive division of two 

separate concepts, natural and formal continuity.  Tall’s framework provides provisions 

for both in the development toward formal thinking of continuity.  Investigations of 

continuity that contribute to this study included: Núñez and Lakoff’s (1998) historical 

 

 

   
 

 
 

Figure 2.3 Item 2.c. and CUR from Chan’s assessment on continuity (2011, p. 67 and 76) 



www.manaraa.com

 

56 

 

considerations of the formal definition of continuity; Tall and Vinner’s (1981) 

investigation of concept image and concept definitions of continuity; Bezuidenhout’s 

(1999) investigations into student misunderstandings of continuity; and Chan’s (2011) 

investigation of differences in levels of understanding of continuity between groups of 

college freshmen.  These investigations inform this study by providing framework for 

developing a measure assessing understanding of continuity concepts.  

Summary 

 This review of relevant research informed this study by considering: the history of 

mathematics educators’ emphasis on teaching mathematics for understanding, reports 

calling for the inclusion of technology in the curriculum, and examples of studies of 

applets and mobile technologies.  The literature reviewed also allowed for a description 

of the development and theory that provided a basis for the instrumental approach, think 

aloud methodology, and three-worlds of mathematics.  As continuity is the mathematical 

concept considered, relevant research regarding continuity was also reviewed. 
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III. Methodology 

 

Introduction 

This study sought to determine the properties of applets and the actions of 

students while using applets that foster the development of conceptual understanding for 

mathematics, by considering the following objectives: 

1. Determine the particular characteristics of the Maplets for Calculus applets 

that promote student understanding of the mathematical concept of continuity 

of a function. 

2. Determine the particular actions and strategies a student develops while using 

the Maplets, which promote the understanding of continuity. 

Questions guiding this investigation included: 

1. The Maplets for Calculus that present continuity exercises include interactive 

graphics, hints, “check” answer, and other features.  To what degree do each 

of these features help promote conceptual understanding of continuity with 

respect to Tall’s Three Worlds (embodied, symbolic, and formal)? 

2. Maplets on continuity also allow students to use multiple features 

simultaneously.  Are there particular combinations of features, e.g. utilization 

schemes, students develop that lead to a more ‘formal’ understanding of 

continuity?  Are there utilization schemes that inhibit understanding of 

continuity? 
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3. In addition to the computer and Maplet software, students were allowed the 

use of paper, pencil, and a calculator. Are there any other patterns of behavior 

or thought that students exhibited while engaged with the Maplets that 

promote/inhibit the development of conceptual understanding?   

This chapter outlines the case study methodology that was used to investigate these 

questions. 

Sample 

 Qualitative investigations generally involve in-depth study of relatively small 

samples selected purposefully.  In this, Patton (2002) provides information guiding the 

selection of subjects for this investigation.  Purposeful sampling includes determining 

those information-rich cases that yield a great amount of information relevant to the 

study being conducted.  A typical case sampling includes representatives of a population 

that indicate average cases.  Subjects are often selected with the cooperation of key 

informants who help identify who is typical.   

 A sample of seven high school AP Calculus (AB) students, who volunteered from 

each of two high schools in the northern region of South Carolina, participated in this 

study.  Three students were enrolled at the high school where the researcher teaches; the 

other four from a high school in a neighboring district.  The design of this investigation 

called for selecting students from two separate schools to ensure that at least half of the 

subjects were unfamiliar with and had not been taught by the investigator.  The 

investigator had taught the three students enrolled at the school he teaches, but was not 

their teacher during the semester of data collection.  The four participants from the 

neighboring district had no prior experience with the investigator.  The most likely effect 
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of the inclusion of students from the same school was the ability to build rapport quickly; 

the inclusion of students from a second school allowed for some measure of control to 

effects that might be tied to investigator/student relationship. 

 Each teacher asked for student volunteers to participate in this study.  From this 

group, the investigator, with the guidance of the teachers, was to select participants who 

represented a sampling of ‘typical’ students enrolled, as recommended by Patton (2002).  

However, upon asking for volunteers, only three students from the investigator’s school 

and four from the neighboring school expressed a desire to participate.  The investigator 

decided to include all seven students in case one or more decided to remove themselves 

from the study.  Additionally, the investigator decided to provide incentive for 

participants to remain in the study, a $25 gift card to a local department store.  

 The students included from the investigator’s school included two young men and 

one young woman.  All three of these students were seniors.  One student reported 

earning an ‘A’ the other two ‘B’s’ when asked about the grade they had earned in their 

pre-calculus class of the previous school year.  The AP Calculus class in which these 

students were enrolled consisted of seven students; their teacher reported that the grades 

of these three students compared favorably with those of the other students in the class. 

The teacher also reported these three students, comparatively, represent a ‘typical’ 

sample of the class with regard to: male/female ratio, race, free/reduced meal status, and 

mathematics ability. The students included from the neighboring school consisted of two 

young women and two young men; three seniors and one junior.  All four students had 

taken pre-calculus the previous school year: three of these students reported earning an 

‘A’ and one a ‘B’. The class in which these students were enrolled consisted of 24 
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students; their teacher reported that the grades of these students were above average 

compared to those of other students in the class.  The teacher also reported these students 

represented a ‘typical’ sample of the class with regard to: male/female ratio, race, 

free/reduced meal status, but were above average in math ability.  As the intent of this 

study was to document individual changes in understanding the concepts of continuity 

while using Maplets for Calculus, the effects of the students’ school, gender, race, 

economic status, etc. while documented above, appear to be negligible to the results of 

the study.  The use of seven students provided sufficient variability among the 

participants and yet allowed for the extensive data transcription and analysis needed to 

address this study’s research questions.  Including more participants in this study may 

have been desirable, but financial costs and time considerations prevented this. 

 Application to the Institutional Review Board (IRB) of the University of South 

Carolina, and approval for the use of human subjects in this research was granted prior to 

the collection of data (Appendix A).  The students who agreed to participate in this study 

were informed of the purpose of the study; consent of the students’ and their 

parent/guardians, in writing, was granted by each (Appendix B).  Student participation 

was voluntary; they or their parent/guardian could choose to withdraw from the study at 

any time.  Additionally, permission to conduct research in their facility and with their 

students was sought and granted by the principal of each school (Appendix C). 

Data Collection 

 As Drijvers and Trouché (2008) explained, the challenge of investigating student 

understanding and of the development of mental schemes is that we cannot observe these 

directly; we are dependent on the interpretation of actions, oral reports, or written data 
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provided by the student (p. 371).  In this, study, the think aloud method was used as the 

primary means of collecting data. 

Other methods of collecting verbal data were considered for this study; however, 

each has inherent concerns for the validity of the data collected by the method.  

Introspection methods, in which a subject is asked to report on her or his cognitive 

processes, poses a problem to validity because subjects report of her or his thoughts post 

process.  Concerns for validity of these verbal reports include memory errors and 

incorrect editing by the subject (van Someren et al., 1994, p.23).  Retrospection, in which 

a subject is asked to verbalize her or his thoughts after completing a task, is offered as an 

alternative to the think aloud method.  A benefit of retrospection is that it does not result 

in validity issues that may occur during concurrent methods because it does not disturb or 

interrupt the subject engaged in a task (p. 22).  However, Wade (1990) discussed that 

problems associated with memory failure may result when verbal data is collected after 

completion of a task.  Prompting involves asking the subject questions as to “why” they 

are using particular strategies, processes, or methods; it allows the investigator to explore 

specific aspects of a subjects’ knowledge state at a given moment.  A concern for the use 

of prompting is that the prompts require interpretation, which affects the problem solving 

process (Chi, Hutchinson, & Robin, 1989; Ferguson-Hessler & de Jong, 1990).  Data 

collected during a dialogue observation can be voluminous; however, such data may be 

incomplete, as subjects may not discuss everything they are thinking during a 

conversation and that the discussion is not necessarily led by the participant (van 

Someren, et al., 1994).   
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The decision to forgo these other methods of data collection in favor of the think 

aloud method predicates an acknowledgement for the limitations of the method and 

measures needed to ensure the validity of data collected.  K. A. Young (2005) presented 

issues regarding the use of think aloud data and ways in which these effects may be 

reduced.  Reactivity issues refer to three consequences of asking a person to think aloud: 

1) the ability to talk aloud and attend to a task simultaneously; 2) the effect of talking 

while performing a task normally done in silent; and 3) the effect of drawing a 

participants’ attention to cognitive processes underlying the task being performed.  

Another possible limitation is the verbal ability of participants and/or their ability to 

verbalize their thoughts.  Finally, the issues of validity of think-aloud data: does the data 

provided accurately reflect the thinking of the subject.  Of particular concern in 

discussing validity is that while think aloud does reflect conscious thinking, it cannot 

reflect cognitive processes that never reach the level of consciousness (Wilson, 1994).  

Measures that can be taken to minimize these concerns include: practicing thinking aloud 

with a subject prior to the task that data will be drawn from; building rapport with the 

participant; subject selection; and combining data collection methods.  Young advocates 

for the collection of both verbal and video data as a way to minimize concerns for 

validity due to incomplete information: 

This is where I have found the use of a combination of data methods essential.  

When one notes what appears to be a critical moment, a post-activity interview 

allows the researcher to delve into the moment to gain further insight...Although 

the learner may, at times, still be unable to provide further insight, it has proved 

for me to be a useful tool to tap into what may be unconscious during the time the 
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action/behavior is engaged but can be brought to consciousness when one is 

specifically asked to discuss the action/behavior.  (p. 25-26) 

While Young advocates recording video of subjects while responding, the researcher 

decided that videotaping subjects had the potential of inhibiting students’ responses, by 

making them self-consciousness or more cautious.  Furthermore, the researcher 

determined that data collected from video recording of students would not be relevant to 

the research questions.  Heeding the concerns for validity of Young, this study did 

employed screen capture recording as well as audio recording while the think aloud 

method was employed.   

 The procedures outlined here are based on those recommended by van Someren et 

al. (1994), and were employed during sessions in which students worked with the 

continuity Maplets (full details of the session protocol is given in Appendix D).  Sessions 

began with the student being: introduced to the observer, explained purpose of the 

research, and asked for permission to continue.  Next, the student was introduced to the 

think aloud method and a “practice exercise” performed.  Performed on paper, the 

observer asked the student to think aloud while solving a problem involving adding two 

fractions (e.g.
3

1

4

3
).  This portion of the session was not recorded.  The student was 

instructed to “say what you are thinking” while solving the problem and told that if they 

remained silent for twenty seconds they would be asked to “please keep talking.”  After 

practicing the think aloud method, the student was provided introduction and instruction 

to the Maplet: a description of the exercises of the Maplet, where the student was to input 

responses, and description of the features available to the student (i.e. ‘hint’, ‘show’, 

etc.). 
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 Upon completion of these introductory steps, students were expected to complete 

the tasks presented by the Maplet while thinking aloud and recording began.  As some of 

these tasks involved computation, paper and pencil was provided for the students as well 

as a graphing calculator.  The researcher monitored the student in order to use the 

prompt, “please keep talking” when necessary, and to note (by indicating the time during 

the recording session) “critical moments” during the session using criteria described by 

van Someren et al. (outlined in the next paragraph).  Consistent with recommendations by 

K. A. Young (2005), these sessions were recorded to capture student oral data and 

student actions on the computer screen.  For this study Snagit, a screen capture software 

tool that both records spoken words and simultaneously records video of the computer’s 

screen was used (TechSmith Corporation, 2013, March 27).  The researcher also included 

notes of students’ actions that related to the study’s research questions (e.g., using paper 

and pencil to jot down ideas) and collected the written data students provided. 

K. A. Young (2005), van Someren et al. (1994), and Ericsson & Simon (1980, 

1984) suggest that a post-activity follow-up interview can provide meaningful and valid 

data if it is conducted soon after the activity session, preferably immediately afterwards.  

In particular, van Someren et al. (1994) describe using this combination of think aloud 

method to inform a retrospective interview for the purpose of illuminating: “pauses in the 

think aloud session or on fragments of the think aloud session that sounded 

incomprehensible, very incomplete or very odd. If possible this should be done directly 

after the think aloud session” (p. 27).  Follow up interviews were recorded to ask for 

clarification about student thinking and to solicit the students’ opinions about the features 

and experience of working with Maplets for Calculus. 
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Description of Maplets 

 Maplets for Calculus (M4C) is a collection of over 140 Maple applets (applets 

built using the Maple software) that provide “interactive graphical user interfaces for 

typical examples and exercises on a variety of topics in single-variable calculus” (Meade 

& Yasskin, 2012).  Five Maplets have been developed for exercises about continuity of 

functions: Left and Right Limits and Continuity, given a Graph (Continuity using a 

Graph); Left and Right Limits and Continuity, given a Formula (Continuity given a 

Piecewise Function); Left and Right Limits and Continuity, given Numerical Data 

(Continuity given a Black Box Function); Continuity of Piecewise Defined Functions 

(Finding the Value of C); and The Epsilon-Delta Definition of Continuity (Epsilon-Delta 

Continuity).  All five continuity Maplets were used in this study.    

 

 The Continuity using a Graph Maplet (Figure 3.1) provides the user with the 

graph of a piecewise function.  In the first step, the user is expected to input the left limit, 

 

Figure 3.1 Beginning screen shot of Continuity given a Graph Maplet.  
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the right limit, and the value of the function for a particular value of x (top half of screen 

shot presented in Figure 3.1).   In the second step, the user is expected to answer a series 

of true/false questions regarding the limit of the function at the value of x indicated 

(usually where a break in the graph occurs), and the continuity of the function from the 

left, right, and overall (bottom half of screen shot in Figure 3.1).  

 Users can solicit help in answering a particular item by clicking the “hint” key.  

For the problem presented by Figure 3.1, the hint provided for finding the right limit of 

the function indicated, at the bottom of the screen, “The limit from the right is the height 

the graph approaches as x approaches 3 from the right” (Figure 3.2).  Another feature of 

Maplets is that after entering responses to all questions, the user can check their answers.  

By clicking ‘check, correct answers are highlighted in green and the word “correct” is 

displayed in a box near the answer; incorrect answers are highlighted in red with the 

word “incorrect” displayed (Figure 3.2).  With Maplets that involve a number of answers, 

an overall evaluation is given at the bottom of the screen (in this example “incorrect” 

appears between the “check” and “show” buttons) only when all items are correct does 

the Maplet mark a particular exercise as correct and an affirming comment is printed in 

the text box at the bottom of the screen.  (One example: “You’re a genius. On to the next 

problem.”)  Users are able to use the “hint” and “check” buttons in combination, as 

shown in Figure 3.2.  Another button available to users is the “show” button.  Doing this 

provides the user correct answers to all questions and ends the exercise.  The exercise 

also ends when the user correctly answers all items, the clicks the “New Function” button 

(presenting a new exercise), or “quits” the exercise.   
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 Descriptions of the other Maplets used in this study are provided in Appendix E.  

Procedure for the Epsilon-Delta Continuity Maplet 

 The Epsilon-Delta Definition of Continuity Maplet provided a unique challenge to 

the investigator.  As Maplets are intended for use as a support of classroom instruction, at 

the time of this study, none of the student volunteers had been taught the epsilon-delta 

definition of either limits or continuity.  The investigator consulted with University of 

South Carolina professors Dr. Douglas Meade, mathematics, and Dr. Ed Dickey, 

mathematics education,  to develop the protocols and activities used with this Maplet.   

 Student sessions began with a preview sheet that presented a cursory introduction 

to the epsilon-delta definition of continuity (Appendix F).  The procedure included 

allowing students time to review this sheet.  While this part of the sessions was recorded 

 
 

Figure 3.2 Screen shot of Continuity given a Graph Maplet after using ‘check’ and ‘hint’ for right 

limit. 
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(for audio) only students’ questions regarding the information on the preview sheet were 

recorded.  For consistency, the investigator declined to answer these student questions 

because the research design called for the instruction to come exclusively from the 

Maplet and instructions for the investiator would compromise the design.  Students were 

then introduced to the Epsilon-Delta Continuity Maplet. 

 Figure 3.3 presents a ‘screen-shot’ of the Epsilon-Delta Maplet.  Students were 

instructed to find a value of delta that satisfies the given epsilon condition for the limit 

provided by either moving the delta slider or entering values for delta into the 

accompanying ‘δ=’ box.  The graph accompanying the diagram adjusts the vertical, 

epsilon, rectangle accordingly.  Students can check their input for delta, as shown in 

Figure 3.3, and continue to enter values for delta. Upon finding a value of delta that 

satisfied the epsilon condition, the investigator asked students to find the largest value of 

delta that satisified the limit given by the Maplet.  This process, finding a delta, then 

 
 

Figure 3.3 Screen shot of the Epsilon-Delta Maplet after ‘check’ for δ = .62. 
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finding the largest value of delta, was repeated for a second limit – one generated by the 

Maplet (using the ‘new limit’ button) but different from the first.  In all cases, the first 

limit exercise used a limit whose graph appeared to be linear; the second limit appeared 

to be a curve in the graph feature of the Maplet. 

 The follow-up activity (Appendix F) presented the participants with a graph of a 

piecewise function with a break in the graph between the defined point (2, 5) and the 

open point (2, 3) (Figure 3.4).  Students were asked to explain why the function was not 

continuous at x = 2 by using the epsilon-delta method of the Maplet.  During this portion 

of the session, students had access to the preview sheet, the Maplet, the follow-up activity 

sheet, and writing instrument.   

 

 All portions of the Epsilon-delta Continuity sessions were recorded, transcribed, 

and coded similar to the other Maplets.  A separate analysis of these Maplet sessions was 

conducted to determine the features of the Maplet and other ‘tools’ (calculator, 

paper/pencil) used and understanding demonstrated for epsilon-delta continuity concepts. 

Developing a Measure for Understanding Continuity 

 The Three Worlds of mathematics inform the development of a scale or rubric for 

determining student understanding of the concepts of continuity.  Calculus topics are 

 
 
Figure 3.4 Graph used in the Epsilon-Delta Continuity follow up 

activity. 
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blended in embodiment, symbolic, and formal worlds as was discussed by Tall (2008), 

which he exemplified with the concepts of limit and derivative.  In this discussion, Tall 

presented a structure for analyzing understanding of derivative concepts developed by 

Hahkiöniëmi (2006).  This structure provides for embodied and symbolic formation of 

the derivative concept and interactions involved in moving toward more formal 

understandings of the concept (Figure 3.5).  Important to this study was the framing of 

understandings and the schemes necessary for developing greater understanding of the  

concepts of continuity.  Developing a diagram for continuity similar to Hahkiöniëmi’s for 

derivatives provided the basis upon which the verbal data collected was evaluated in 

determining students’ understanding.   

 

 Starting with the framework presented by Tall’s diagram (Figure 2.2), the 

researcher, informed by Núñez et al.’s natural continuity as an embodied understanding 

and formal continuity as the symbolic understanding for continuity, and further informed 

by Chan’s conceptual understanding rubric of continuity (Figure 2.3); the researcher 

 

 Figure 3.5 Hahkiöniëmi’s hypothesized learning framework for derivative (2006). 
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selected quotes or paraphrased examples from the student participants’ verbal data to 

provide examples typical of the varying levels of understanding of continuity concepts 

(Figure 4.1).  While the researcher has taught and studied calculus and continuity, to 

provide for the validity of this measurement tool, the investigator had this rubric 

reviewed for accuracy of continuity concept levels and accuracy of student verbalization 

indicative of understanding at these levels.  Dr. Douglas Meade, professor of 

mathematics at the University of South Carolina, and Ms. Paula Adams, doctoral 

candidate (secondary mathematics education) at the University of South Carolina and AP 

Calculus teacher reviewed the rubric diagram and agreed that the draft presented was an 

appropriate representational framework for understanding the concept of continuity.   

Analyzing the Data 

 Think aloud sessions were transcribed for oral data, coordinated computer 

activity, and written/calculator activity.  For example: 

Student: “Lets’ see...if I follow this part of the graph...the limit appears to 

be 4” [input] left limit = 4 

Or, 

Student: “I think I need to compute the value at 3,” computes function value 

at 3 on paper, “It’s 5.  I’ll enter that.” [input] right limit = 5  

After transcribing, the researcher segmented the transcripts.  Segmenting refers to the 

process of breaking up the transcript into segments or units.  Van Someren et al. (1994) 

suggest that the combination of pauses and linguistic structure provide a general method 

for segmenting think aloud protocols (p. 120).  Chi (1997) advises that segmenting can be 

performed based on non-content features, such as those suggested by van Someren et al., 
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or on semantic features of the transcript, such as: argument chains, impasses met while 

problem solving; change in topic; etc.  Combining segments along semantic lines of a 

particular idea or thought is referred to as an episode and considered to be a single 

element (van Someren et al., 1994, p. 120).  This episodic approach was used in 

segmenting the transcribed data of this study.  

 Coding of the segments refers to labeling the units of the transcripts by categories 

and determining which segments will constitute evidence for a particular code.  When 

used to study think aloud data the coding scheme represents the collection of all codes 

used to represent the model of cognition being studied (van Someren, et al., 1994; Chi, 

1997).  According to Chi (1997) this is dependent on the researcher’s theoretical 

orientation, the questions being asked, the task, and the content domain (p. 12).  Van 

Someren et al. (1994) suggest researchers develop a coding scheme for problem solving 

by taking every process described by the model and “state how you would expect these 

processes to appear in the protocols” (p. 121).  Chi (1997) similarly states that codes can 

be developed from a taxonomic categorical scheme (p. 12).  Chi and VanLehn (1991) 

developed a coding scheme of this type for investigating student use of textbook 

examples for solving physics problems.  In this study, codes included: concepts to 

describe mentions of mass, weight, etc.; principles to code mentions of entities related by 

Newton’s laws; systems for comments regarding the interaction of objects; and technical 

knowledge for algebraic manipulations of vectors.  They used this coding based on their 

hypothesis that students could learn to solve problems without much understanding for 

the underlying principles or concepts.  These categories were chosen to isolate the 

learning of concepts, principles, systems, and knowledge.  Another study that involved 
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developing a coding scheme based on this deconstruction of a model for knowledge was 

Chi, de Leeuw, Chiu, and LaVancher’s (1994) investigation to determine the mental 

models students have regarding the human circulatory system.  The researchers coded 

based on the model of how the system works.  Later in the study, they developed criteria 

for determining a student’s mental model for the circulatory system based on collective 

oral data.  For example, researchers inferred a student had a “Single Loop” model if a 

student made mention of all of the following during their verbal description: 1.) Blood is 

primarily contained in blood vessels; 2.) Blood is pumped from the heart to the body; and 

3.) Blood returns to the heart from the body (p. 468).  These models were hierarchical, 

with the complete model represented by evidence of all facts for the circulatory system. 

 These studies informed the construction and use of the model for understanding 

the concept of continuity (Figure 4.1) and served as the categorization and labels for 

coding student understanding in this study.  Furthermore, Chi, de Leeuw, et al.’s (1994) 

study informs this research by the inclusion of criteria that must be present in order for a 

particular mental conception (model) to be evident in the verbal data. 

 In addition to determining student understanding of continuity, this study also 

sought to determine the actions or usage schemes developed while using Maplets that 

contribute to understanding continuity.  Hoffkamp (2010) provided guidance for using 

protocol data to re-construct the development of mathematical understanding in students 

by viewing the data in chronological order.  Working in pairs, students performed 

exercises related to the functions using applets in a dynamic geometry software package.  

Student groups were video recorded while engaged in the exercises to monitor both 

conversation and computer activity. By sequential analysis of the texts (transcripts) after 
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coding, Hoffkamp sought to determine, “the interpretation of the actions and 

conversations and the re-construction of meaning...based on the chronology of their 

appearance” (p. 15).  Using this approach to analysis, Hoffkamp was able to document 

how students used their knowledge of functions while working on the computer activities 

to develop concepts of calculus; and to detect some obstacles in learning while working 

in the computer environment.  Similar to Hoffkamp, this study sought to determine how 

the use of computer applets can contribute to the understanding of calculus concepts.   

 The research questions of this study required the coding of data for two particular 

situations: 1) the Maplet features used; and 2) the utilization schemes or strategies 

students used while working with the Maplets.  

 The coding schemata developed for the features used by students included 

documenting and labeling the feature used by a student during the Maplet exercises.  For 

example, during the course of reviewing and transcribing the screen capture recordings, 

the investigator noticed that students often used a graph feature in a particular manner 

that involved using the cursor to ‘trace’ the graph.  The investigator decided to label the 

use of the graph feature in this manner as GR-T for graph-trace.  In coding the transcripts 

for the use of features, the following segment is representative of those labeled GR-T: 

[New Function] graph w/ break, f defined on right side of graph  

 Uses cursor to trace graph from left and right to the break   

 [input] left limit = 4, right limit = 5 

This pattern of using the graph feature by tracing with the cursor was repeated by all 

students and was used across different Maplets.  In similar fashion, other codes were 

identified and used.  For example, the code GR-I was an abbreviation for Graph-
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Interpretive that referred to the student use of the graph feature of a Maplet by 

mentioning it verbally in a response or in reasoning.  Similarly HT-RL is coding for using 

the ‘hint’ feature for the right limit item of a Maplet.  A complete list of codes for the 

features used by students appears in Appendix G. 

 Coding schemes for the utilization schemes students developed were determined 

by reviewing the screen capture recordings and transcripts and noting the patterns in 

which students combined and used features of the Maplets or combined Maplet features 

with the other ‘tools’ provided (paper/pencil and graphing calculator).  Informed by 

Drijvers and Trouché (2008), these coding schemes were categorized as either usage 

(elementary) or instrumented action (more complex).  Usage schemes were identified by 

the elementary use of one or two features in combination.  For example, during review of 

the screen capture recordings and transcripts, the investigator would notice that after 

using the ‘check’ feature, a participant might then change an incorrect responses a 

true/false item without orally explaining the reason for the change.  Also, there would be 

no apparent screen capture evidence of any further work.  This pattern of using the 

‘check’ feature of the Maplets followed by a ‘change’ in response was thus labeled CK-

CG for check-change strategy.  Instrumented action schemes move beyond the 

elementary use of features to a complexity that can be arrived at by combining features 

with reasoning, combining usage schemes, or combining features of the Maplets with 

other tools provided the students (paper, pencil, or calculator).  An example of the 

development of an instrumented action scheme might involve the investigator noticing 

students on the screen capture recordings or from the transcripts, using the ‘check’ 

feature, being notified that an answer was incorrect, and then performing an intermediate 
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action before changing the input. These intermediate actions had either visual evidence 

on the recording, or the stated action of working with the other tools provided (students 

were asked to verbalize their actions while using paper, pencil, or calculator).  One 

episode from the transcripts serves as another example of Instrumental Action that also 

illustrates the development of the investigator’s utilization coding scheme is: 

[check] left limit, incorrect, “It’s not -10” 

[hint] left limit, reads aloud, The limit from the left… 

Moves cursor to graph, “So the left is over here…you follow it,” tracing graph left 

to right w/cursor, “as it approaches 2…so it’s going down…it looks like it’s 

towards -10”, moves cursor to left limit, “but maybe it’s just less than…-5” 

[input] left limit = -5 

This episode was originally coded check-hint-graph-change to accommodate the 

intermediate actions and use of features by the student between the ‘check’ and changing 

of the response.  However, after coding similar episodes with other intermediate student 

acts (e.g. check-graph-change, check-calculator-change, etc.), the investigator decided to 

collapse these codes to check-rework-change using the abbreviation CK-RW-CG.  A 

complete list and description of utilization codes appears in Appendix G. 

 The examples from the previous paragraph detail the process used by the 

investigator to determine codes and apply the codes to episodes of the transcribed data.  

To ensure accurate coding, the investigator first encoded the data for features of the 

Maplets then encoded for utilization schemes.  All encodings were based directly on the 

study’s research questions.  In reviewing transcripts and screen capture recording 

evidence for coding the features used, the investigator noted when a feature was used and 
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also provided more detail on the usage if needed (e.g. hint right limit).  The 

identification and coding of utilization schemes was determined by observing patterns of 

repeated use of combinations of features and strategies in the data. The repeated use of 

particular Maplet features, tools, and oral reasoning by students always caused the 

investigator to identify the episode with a particular utilization code.  As with the feature 

codes, utilization codes described the sequence of features and/or actions of an episode, 

similar to the check-hint-graph-change sequence of the previous paragraph.  Labels and 

description of codes developed for documenting the utilization schemes developed by 

students are presented in Appendix G. 

 Hoffkamp’s (2010) work informed the analysis of the data.  Using the framework 

developed for continuity in Tall’s Three Worlds model, students’ oral data was analyzed 

to document growth in understanding of continuity concepts. For example, one student 

initially described her understanding of continuity by referring to a graph or visual 

representations and this was interpreted as embodied understanding.  Later, the same 

student described continuity in terms of the left/right limits, a shift to symbolic 

understanding.  The investigator then reviewed the transcripts and screen capture 

evidence prior to this shift to note the features and strategies used by students during this 

episode.  In reviewing the evidence from all students, the investigator analyzed the data 

to determine gains in understanding across all Maplets and to list the features and 

strategies that appeared to contribute to the particular instance of understanding (see 

Findings in Chapter IV).  

 In assessing and evaluating qualitative research, Merriam (2002) describes 

internal validity with the questions, “How congruent are one’s findings with reality?”    
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(p. 25).  Likewise, Lincoln and Guba (1985) discuss internal validity in terms of 

trustworthiness or credibility in using the qualifying question, “Do the findings capture 

what is really there?” (p. 290).  Both suggest the internal validity of qualitative research 

can be improved through peer review.  According to Merriam, “a thorough peer review 

examination would involve asking a colleague to scan some of the raw data and assess 

whether the findings are plausible based on the data” (p. 26).  In addition to the issue of 

internal validity, both Merriam and Lincoln and Guba address the issue of reliability.  In 

qualitative research, both refer to this issue as one of dependability or consistency, that is, 

“whether the results are consistent with the data collected” (Merriam, p. 27).  Merriam 

and Lincoln and Guba again suggest that reliability can be enhanced through peer review 

and an audit trail.  “An audit trail in a qualitative study describes in detail how data were 

collected, how categories were derived, and how decisions were made throughout the 

inquiry” (Merriam, p. 27).  As Dey suggests, with qualitative research “we cannot expect 

others to replicate our account, the best we can do is explain how we arrived at our 

results” (1993, p. 251). 

 Dr. Jan Yow, Assistant Professor, University of South Carolina and Dr. Robert 

Petrulis, Principal Consultant, Evaluation, Policy and Research in Education Consulting 

each conducted a peer review of this study.  Dr. Yow and Dr. Petrulis were asked to 

review this study based on their experience with qualitative research methods – including 

original research, officiating studies, and advising dissertations that employed qualitative 

methods.  Each reviewed and provided the investigator with comments about 

representative excerpts from the raw data (screen capture recordings) to transcribed data 

and the development of coding schemes.  They also reviewed the findings based on the 
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data for trustworthiness and consistency.  Based on their review of the methods 

employed; representative excerpts from the raw data, transcripts, and developed codes; 

and their review of the investigator’s findings based on the data, each concluded the 

study met their expectations for trustworthiness and consistency. 

Summary 

 This chapter presented the research methods employed in this study.  The 

methods included the selection of seven subjects from separate high schools enrolled in 

AP Calculus.  All students who volunteered were included in the study; consultation with 

their teachers deemed these students as ‘typical’ representatives of students enrolled in 

their class.  The method of data collection was documented to include use of, and validity 

of, think aloud protocols while students engaged in the Maplets for Calculus activities.  

Collection of data included the use of the screen capture software SnagIt to record student 

computer activity as well as oral data, including the follow-up interviews to Maplet 

sessions.  A description of the Maplet for Calculus applets was provided using the Maplet 

Continuity given a Graph.  As the Maplet Epsilon-Delta Continuity used a concept that 

had not been taught to students, a protocol and activities for these student sessions were 

developed with the help of mathematics and education experts. The process used to 

develop and validate a rubric for determining student understanding of continuity 

concepts with respect to Tall’s Three Worlds Model was discussed.  This rubric appears 

in the results of Chapter IV (Figure 4.1).  Theory and examples from literature regarding 

the selection and application of codes and analysis of data was presented to justify the 

decision to code and analyze the transcribed data episodically for:  demonstrated 

understanding of continuity using the three world rubric.   Analysis of the data, similar to 
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Hoffkamp’s, was conducted to determine the features and strategies used prior to 

students’ documented gains in understanding.  
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IV. Results 

 

Introduction 

This study sought to determine the properties of applets and the actions of 

students while using applets that foster the development of conceptual understanding of 

mathematics, by considering the following objectives: 

1. Determine the particular characteristics of the Maplets for Calculus applets 

that promote student understanding of the mathematical concept of continuity 

of a function. 

2. Determine the particular actions and strategies a student develops while using 

the Maplets, which promote the understanding of continuity. 

Questions guiding this investigation included: 

1. The Maplets for Calculus that present continuity exercises include interactive 

graphics, hints, “check” answer, and other features.  To what degree does each 

of these features help promote conceptual understanding of continuity with 

respect to Tall’s Three Worlds (embodied, symbolic, and formal)? 

2. Maplets on continuity also allow students to use multiple features 

simultaneously.  Are there particular combinations of features, e.g. utilization 

schemes, students develop that lead to a more ‘formal’ understanding of 

continuity?  Are there utilization schemes that inhibit understanding of 

continuity? 
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3. In addition to the computer and Maplet software, students were allowed the 

use of paper, pencil, and a calculator. Are there any other patterns of behavior 

or thought that students exhibit while engaged with the Maplets that 

promote/inhibit the development of conceptual understanding?   

 These research questions provide the outline for the presentation of the results and 

findings in this chapter.  First, as the conceptual understanding of continuity based on 

Tall’s (2008) Three Worlds model  is foundational to determining the influence of applets 

and strategies, the development of a comparable model specific to continuity concepts 

will be presented and justified based on the analysis of the data gathered in this study.  

Next, an analysis of student use of Maplet features, the frequency with which features are 

used, and examples of how the features are used will be presented.  As suggested by 

Djivers and Trouché’s (2008) instrumental approach, students involved in this 

investigation processed the features, functions, and “tools” of the Maplets and developed 

particular strategies, utilization schemes, while using these features for completing the 

exercises.  The third section of this chapter will document these usage schemes and 

instrumented action schemes, based on the researcher’s analysis of the data.  In working 

with the Maplets during the recorded sessions, students were given access to paper, 

pencil, and a graphing calculator.  Strategies and uses of these ‘other’ tools will also be 

included in the presentation of these utilization schemes.  Each of the first four Maplet 

sessions concluded with an interview of the subjects.  One objective of these interviews, 

suggested by K. A. Young (2005), was to clarify, for the interviewer, student thinking 

during particular instances of the ‘think aloud’ exercises.  Another objective of these 

interviews was to ask the students for their perceptions and opinions of the Maplet and its 
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features.  Student responses regarding features of the Maplets will be presented in a 

separate section.  Maplets for Calculus are intended to be used as a support for classroom 

instruction.  As the protocol for conducting the sessions with the Epsilon-Delta Definition 

of Continuity differed from the other Maplets used in this study, results from these 

sessions will be presented.  The final section of this chapter presents the findings based 

on the data analysis. 

Documenting Student Understanding of Continuity Concepts 

 The development of the model by which student conceptual understanding of 

continuity concepts is derived from research (i.e. Tall, 2008; Núñez et al., 1999; Núñez & 

Lakeoff,1998; and Chan, 2011) and from the verbal data provided by students as they 

thought out loud.  The model developed provided the basis for evaluating the level of 

student understanding in Tall’s Three Worlds: embodied, symbolic and formal, on the 

basis of verbal data given.  First, the Three Worlds model and diagram of Tall (2008, p. 9, 

presented in the literature review) was re-drawn and revised to include the continuity 

concepts discussed by Núñez et al., Núñez & Lakeoff, and Chan.  Figure 4.1 contains this 

diagram.  The diagram features the categorization of the natural limit classification given 

by Núñez et al. as those understandings of continuity concepts that appear to be 

conceptual and embodied.  Examples here include students stating a function is not 

continuous because of a break or jump in the graph.  Primarily, student development of 

continuity concepts in the embodied world was documented in comments that primarily 

discussed the physical aspects of the graph of a function.  In this model, Núñez et al.’s 

description of definition continuity categorizes the proceptual-symbolic representations of 

continuity based on limits and function values.  Student data such as, “the function is 
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continuous because the left and right limit and the function value are all the same,” 

suggests this student is using limits and function value as distinct items, procepts, to 

determine continuity.  Chan’s rubric for analyzing student responses to continuity items 

on a test provide for increasing levels of understanding of continuity concepts in 

embodied, symbolic, and blended worlds.  The diagram in Figure 4.1 represents the 

culmination of the review of both the theory and analysis of the student data to present a 

model for understanding student responses of conceptual understanding of continuity 

within the three world’s model. 

Data Indicating Development in the Embodied World 

 Núñez et al. noted that advances in understanding can occur in the embodied 

world.  In particular, Núñez & Lakeoff, in their presentation of the history of continuity, 

stated that prior to the late nineteenth century, mathematicians based continuity on 

motion of objects and based their advanced mathematical work on natural definitions of 

continuity.  Analysis of the evidence suggests similar growth in reasoning while working 

with Maplets.   One student who progressed into the axiomatic-formal areas of Tall’s 

model related most all of his exercises to the physical and natural descriptions of 

continuity.  For example, while using the Maplet Continuity using a Piecewise Function, 

this student proceeded in the following manner:  

 Given the piecewise function: 

 f (x) = {  

 

Student graphs y = 5-x on graphing calculator and traces to x = 4,  
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 [input] left limit = 1 

Graphs y = 3 on calculator, traces to x = 4 and [input] right limit = 3 

This student further went on to explain that the function had continuity from the right 

because the graph “would have a closed hole at that point,” but left continuity did not 

exist because there was, “an open hole at that point.”   All of his responses were correct 

for understanding the concepts of left and right limits as well as continuity, however, 

whereas most students would use the function definition given to compute the values of 

the limits from the left and right by simply substituting into the appropriate formula of 

the piecewise function given, this particular student continued to, in his words, “visualize 

the graphs” even when asked to perform the exercise above without using the graphing 

function on his calculator. 

Data Indicating Development in Symbolic World 

 The use of the actual values of the limits, indicate development in the proceptual-

symbolic world of thinking.  Comparing the values and equality and how these indicate 

whether or not continuity exists fall into Núñez et al.’s description of formal definition of 

continuity based on the Cauchy-Weierstrass definition.  Student evidence of growth in 

this domain focused on the verbalizations that eschewed the physical descriptions for 

reasoning based on limits, their values, and at times, equality of these.  One example, 

from a student working with the Maplet Continuity given a Black-Box Function:  

 Student moves cursor to ‘limit of f exists’ item. 

 “So the limit does exist since both [the left and right] limits are the same,”  

 [input] limit f exists = True 
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 “Continuous from the left and right is false because they [the left and right limits] 

 don’t equal what f (2) equals,”  

 [input] f is continuous from the left = False 

 [input] f is continuous from the right = False 

Another example from the evidence indicating student understanding of continuity in the 

symbolic world is taken from student data while working with the Maplet, Finding the 

Value of C: 

 New function: 

 f (x) = {  

 

 Student substitutes and computes limits on paper. 

 

 [input] Left limit = 4; [check] correct 

 [input] Right limit = -16-4*C; [check] correct 

 Interviewer: “I’m going to ask you to try this one without manipulating the graph 

 or using the slider.” 

 Student: Hesitates, and then says, “I’m going to figure out what C is so that way 

 they [the left and right limits] both equal 4.” 

 Writes equation -16-4C = 4 on paper and solves to get C = -5. 

 [input] C = -5 [check] correct 

 “So that’s how you do it without using the graph.” 

In this episode, the student data indicates an understanding of the definition of continuity 

in that the left limit must equal the right limit.  Using this, the student set both limits 

equal, wrote the equation -16 – 4*C = 4, and solved for the value of C. 
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Data Indicating Development Blending Embodied and Symbolic Worlds 

 Núñez et al. (1999) contend that difficulties in developing understanding of 

continuity concepts arise from their assertion that natural continuity and formal 

continuity definitions represent two different cognitive contexts – which in turn represent 

two different sets of concepts that students have to learn (p. 55).  Tall maintained the 

Three Worlds model is particularly well suited for investigating calculus concepts, as 

most of these concepts have embodied and symbolic components.  Predating Tall’s Three 

Worlds model, Tall and Vinner (1981) discussed the difference indicated by Núñez et al. 

as that of concept image, the embodied idea of continuity representing a graph with no 

gaps, and concept definition, the formal definition of continuity based on limits.  Tall’s 

Three Worlds model accounts for the ability to work in, or move between the embodied 

and symbolic worlds – a section of his model between the two that he termed “blending 

embodiment and symbolism.”  Evidence gathered in this investigation that demonstrates 

a blending of embodied and symbolic descriptions for continuity included student 

statements invoking both a limit definition of continuity and physical descriptor of the 

same within a single statement or reasoning for action while engaged in a Maplet activity.  

One such example, from a student transcript for the Maplet Continuity given a Graph: 

 [input] limit f(x) exists = False, “because there’s a jump from…the limit from the 

 left and right, from 3 to 5” 

In this particular example, the left limit of the function was 3, the right limit was 5, and 

the value of the function was also 5.  In describing the right continuity of this example, 

this student explained: 
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[change] right continuity = True, “Actually, it is continuous from the right 

because the limit of f(x) as it approaches 3 from the right is 5 and the value f(3) is 

also equal to 5.  So it is continuous from the right.”  

This student’s response in reasoning for the existence of the limit at x = 3 and the 

continuity of the function from the right demonstrates an ability to move between both 

the embodied, “there’s a jump”, and the symbolic, “the limit of f(x)…is 5 and the value 

of f(3) is also 5”, with regard to reasoning for these continuity concepts. 

Data Indicating Development of Formal Thinking 

 Formal thinking as described in Tall’s worlds may take form in either the 

embodied or symbolic world.  This thinking presents itself when knowledge and 

properties about concepts are represented by axiomatic thinking.  For this study, formal 

thinking was indicated in the evidence when students used the definitions, knowledge, or 

properties of continuity to explain reasoning for a conclusion they made while engaged in 

the Maplet exercises.  One example of such reasoning from a student discussing the 

continuity for a particular function from the transcripts while using Continuity using a  

Piecewise Function: 

 f (x) = {  

 

 Reads function formulas, substitutes/computes/inspects aloud,  

 

 [input] left limit = 4, right limit = 3, f(5) = 4 

 [input] limit exist = False, “because the limit from the left and right don’t equal”   

 {Move to more formal.} 
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 [input]  f is continuous from the left = True,  

 [input]  f is continuous from the left = False, 

 [input]  f is continuous = False, “because left and right aren’t [continuous]” 

 {Move to using left and right continuity to determine overall continuity of f.} 

In this episode, the student exhibited formal thinking for the concept of the overall 

continuity of the function as a self-developed axiom that suggests that a function is 

continuous, only if it is continuous from the left and from the right.  This differs from the 

definition given by the Maplet hint for this overall continuity that states, “The function is 

continuous when the limit from the left, the limit from the right and the value are all 

equal.” (Notice the hint describes continuity in terms of its limits, whereas the student 

described continuity in terms of left and right continuities.) 

 Another student example of formal thinking is indicated by the following example 

from the epsilon-delta follow-up activity:  

“If epsilon was 3,” draws horizontal line at y = 2 (Figure 4.2), “the graph would 

be continuous since the right part of the graph,” points to open point (2, 3) on 

graph, “would be within [the epsilon width] of the left part,” points to the closed 

point (2, 5).   

“But for it to be continuous, it would have to work for all values of epsilon, no 

matter how small. 

This example demonstrates this student’s ability to formally describe the discontinuity of 

this example in a manner consistent with the epsilon-delta definition.  Furthermore, it 

provides evidence of Tall’s and Núñez et al.’s contention that formal thinking can be 
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developed in the conceptual-embodied world and is not necessarily dependent on 

proceptual-symbolic thinking. 

Synthesis of Student Data for Understanding Concepts 

 Figure 4.1 provides a rubric for understanding student data regarding their 

understanding of the concepts of continuity in Tall’s Three Worlds.  This model includes 

examples of student responses that are indicative of levels of understanding of continuity 

concepts as outlined by Núñez and Chan within Tall’s Three Worlds model to consider 

movement towards formal thinking.    

 The diagram in Figure 4.1 served as the rubric upon which the verbal data 

collected was evaluated for understanding of continuity concepts, as well as a chart of the 

progression or growth for understanding toward higher levels of comprehension related 

to the concept of continuity.   The sections that follow will present data about the features 

students used and the strategies students developed while working with Maplets about 

continuity. While the data listed is relevant to answering the research questions, the 

model developed in this section informs and organizes the contribution to understanding 

that these features and strategies provide.  The Findings section concluding this chapter 

 
 
Figure 4.2 Graph from epsilon delta follow-up activity with example of student drawn line at y = 2. 
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presents the evidence of understanding of continuity that students developed, using the 

rubric based on Tall’s Three Worlds model along with evidence of features and strategies 

that appeared most helpful in developing these understandings 

Features Used by Students Working With Maplets 

 The Maplets for Calculus that provide exercises with regard to continuity include 

numerous features and function operators that students may use while completing the 

exercises given.  This section will present data based on the observations of the features 

students used as analyzed from the frequency with which these features/functions were 

employed while using the first four of the continuity Maplets.  Table 4.1 summarizes 

these frequencies.   

 
 

 The most frequently used feature of the Maplets was the ‘check’ feature.  This 

feature allowed students to determine if their input for answers to the exercises were 

correct.  Upon selecting the ‘check’ button, the Maplet would display the word “correct” 

Table 4.1 

 

Frequency of Use of Maplet Features 

 

Feature/Function Occurrences 

  

Check 322 

Graph/Slider/Black Box 

 

193 

Change 99 

Hint 31 

Show 24 

Note. Data compiled for 7 students completing 158 exercises. 
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highlighted in green or “incorrect” in red next to the student responses.  The first three 

Maplets used in this study were designed so that the students could only use the ‘check’ 

feature after completing all seven parts of the exercise.  For the fourth, finding the value 

of C, students could check each of the three inputs separately: left and right limit and 

value of C.  In addition to displaying “correct” or “incorrect”, a message would be 

displayed in a box at the bottom of the screen.  Correct messages included statements 

such as: “You hit the nail on the head. On to the next question.”; “Perfect. You're 

unstoppable. Try another function”; and “Cool beans! Try another step.” Incorrect 

messages included: “It takes a lot of wrongs to make a right. Please try again.”; “You're 

colder than a polar bear's toenail. Please try again.”; and “Sorry Charlie. Study the hints 

and answer again.”  As seen in these few examples, the incorrect messages included 

suggestions to ‘try again’ and encouraged the students to ‘study the hints’.   

 The second most frequently used features were specific to each of the Maplets.  

This classification of features/function included the use of graphs, sliders, or the ‘black 

box’.  Graphs were featured in the Maplets Continuity using a Graph and Finding the 

Value of C.  Graphs provided for the cursor becoming a cross-hair when moved on the 

graph section of the computer screen, though it did not provide coordinates for the cross-

hair (Figure 4.3).   

 Visual data (from screen capture recordings) that indicated a student used the 

graph included either using the cursor to move to a specific point on a graph or using the 

cursor to trace the graph, such as this example from the transcripts: 
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 [Student] moves cursor to the right limit, reads, “limit f(x) as x approaches 2 from 

 the right,” moves cursor to graph and traces from R to L, “follow this line.  

 x = 4,”  

 [input] right limit = 4. 

Verbal data also indicated the use of the graph, as exemplified here: 

 [check] right continuity is incorrect  

 “Oh, it is continuous because there’s a closed dot,”  

 [change] right continuity = True, “that’s why.” 

A slider was included in the Finding the Value of C Maplet.  Movement of the slider 

would move one section of a piecewise function so that the two parts of the graph would 

become continuous.  This allowed the user to estimate the value of C that would make the 

function continuous.  The Continuity using a Black Box Function allowed a user to input 

a numeric value for the x variable and would output the value of the function.  That these 

features were used so frequently appears to be indicative of the nature of the Maplet in 

which each was presented – answering the questions for limits and continuity depended 

on these features, thus students needed to use them. 

 
 
Figure 4.3 Screen shot of Maplet graph feature with cross-hair. 
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 Another key feature of these four Maplets was the ability to continue working on 

the same exercise and re-enter answers if the students’ initial input was incorrect.  In 

transcription, this was denoted as [change] to indicate a student changed a previous 

response.  As indicated from the incorrect answer messages above, the Maplets 

encourage students to continue working on an exercise until it is completed correctly.  

One example of a student using the ‘check’ and then re-entering input, from the 

transcribed data using the continuity given a graph Maplet, is shown here: 

 [check] left and right limit are incorrect 

 “Ok, so I just got these mixed up.” 

 [change] left limit  = 1, right limit = 4  

 [check] all correct  

 “There we go.” 

The ‘check’ and ‘change’ features were used together in this episode and did become part 

of strategies developed by students.  Data suggests that changing responses occurred 

more frequently early in the use of each Maplet, particularly the first three exercises or 

problems, because as students became more proficient in their responses, the less they 

needed to change their responses. 

 Data suggest the other two functions predominately placed on each Maplet screen, 

the ‘hint’ and ‘show’ buttons, were not frequently used.  The ‘hint’ function presented 

users with a message in the box at the bottom of the screen, often a definition for the 

question they sought the hint for.  An example of a hint for the question: “f is continuous 

from the left” (a true/false item):  
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 The function is continuous from the left when the limit from the left is equal to the 

 value of the function. 

As implied by its name, the ‘show’ function would display the answer to all items, in the 

case of the first three continuity Maplets, or a particular item in the case of the Finding 

the Value of C Maplet.  One instance of student use of the ‘show’ function: 

 “And then the limit x approaches 2…” moves cursor to right limit, “so that would 

 be…” 

 [hint] right limit, reads aloud, “The limit from the right is the value the function 

 approaches as x approaches 2 from the right.” 

 “So if C,” moves cursor briefly to graph, “Hmm…” 

 [show] right limit = -8-2*C 

 “Huh? Ok, what?”  

 [hint] right limit, reads aloud, reads, “-8-2*C.  How…does that work? …I have no 

 idea…huh…so, let’s see” 

Eventually this student used the ‘show’ function to develop an understanding that the 

limit needed to be an expression with C instead of a numeric value.  Results on the use of 

these two features appeared mixed – in some instances they provided clarity and insight 

into how to proceed in an exercise, as was the case in this last example; in others, 

accessing the featured added to the confusion the student appeared to be experiencing 

when used.  In follow up interviews, students who did not find the hints helpful 

responded in a manner similar to this student: 

 “…they [the hints] do not help me at all, with the way they are worded.  I was 

 looking for a step by step procedure instead of a definition.” 
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 While the ability to record instances for use of each of the above features is an 

advantage of screen capture and transcription review, one feature not mentioned 

previously was discussed by some of the students during interviews concluding each 

session.  Five students reported the layout of the Maplet as contributing to their 

understanding.  These students cited the order and organization of the problems from 

limits at the top (left/right and function value) and continuity on the bottom of the screen.  

“It was easy to follow,” noted one student.  Another student commented, “The problems 

are done in steps and the questions organized in a way that was helpful to understand.” 

 Two other features of the Maplets appear to contribute to student understanding: 

the variety of problems presented by the Maplets and the directions/prompts given to 

students.  Using the ‘new function’ or ‘new limit’ button presents the user with a new 

problem selected at random from a data base.  Because students cannot determine which 

problem is presented, this feature was not included in the frequency chart in Table 4.1.  

However, the variety of problems does appear to contribute to the development of 

students’ understanding of continuity.  The directions appear in blue type on each Maplet 

screen to guide the user through the activity.  The prompts are presented in the ‘message 

box’ at the bottom of the screen after use of the ‘check’ or ‘hint’ feature.  Reading and 

following the directions, as well as reading and following the suggestions of the prompts 

appear to contribute to understanding.  As the directions and prompts could not be 

selected by the students, they were not included in Table 4.1. 

 In summary, analysis of data for student use of Maplet features has shown that the 

‘check’ function was, by far, the most frequently employed by students while engaged in 

the exercises and problems presented by the Maplets, over one and a half times as much 
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as the next most frequent graphs, sliders, and black box function.  The change feature was 

employed with less frequency as students progressed in their understanding of each 

exercise.  Hints and the show functions were rarely used by students.  Post session 

interviews with students indicated that in addition to these features, the 

layout/presentation of the Maplet problems and questions was another feature they 

considered important.  Finally, analysis of the transcripts suggests that the variety of 

problems and the directions/prompts of the Maplets are two other features that may 

contribute to student understanding. 

Utilization Schemes Used by Students Working with Maplets 

 Drijvers and Trouché summarized their instrumental approach framework with 

the equation: “instrument = artifact + scheme”.  In this, an artifact is the tool or 

technology that can be made into an instrument given an accompanying scheme for 

employing the artifact in use for solving a problem.  In the case of Maplets for calculus, 

the artifacts can be considered the features and functions of the Maplets that may be used 

during the course of solving the mathematical problems that are posed.  This section also 

includes the use of tools other than the Maplet: paper, pencil, and graphing calculator.  

Furthermore, Drijvers and Trouché distinguish between two types of utilization schemes: 

usage schemes and instrumented action schemes.  In making this distinction, they 

describe a usage scheme as elementary level schemes that are often direct functions of the 

artifact.  One example with Maplets may be the use of the check ‘button’ to determine if 

inputs are correct.  An instrumented action scheme is a more complex scheme involving 

either multiple usage schemes or the incorporation of a particular usage scheme as part of 

a larger strategy for solving a problem.  For example: one student used the hint feature of 
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the left and right limits whenever she was unclear about which limit the ‘arrow’ notation 

indicated.  In this case, each hint started with the phrase, “The left limit is the limit of f(x) 

as …” that she used to determine where to input her response to the left limit items.  In 

this use, the hint feature was part of a larger instrumented action strategy, which 

employed using the graph, formula rules, or the black-box function (this student used the 

hint for this purpose in each of the first three Maplets) to solve the problem of computing 

the left limit.  (Note: this student did not use this strategy for the right limit, as once the 

left was known; the other limit had to be the right.) 

  Analysis of the data determined that students employed both utilization schemes 

in solving the exercises in the Maplets.  Descriptions and examples of usage and 

instrumented action schemes will be presented in this section.  Utilization schemes will 

be presented by the number of students employing each strategy.   In addition to 

organizing this section by usage and instrumented approach schemes, some schemes 

appeared to be employed across multiple Maplets.  Others appeared to be utilized in 

individual Maplets only.  These divisions within the usage and instrumented action 

schemes were also documented during the analysis of the utilization schemes.  A 

summary of schemes used by students while working with the first four Maplets is 

presented in Table 4.2. 

Usage Schemes – Multiple Maplets 

 Data indicate that usage schemes employed by students across various Maplets 

included: tracing a given graph with the cursor to find limits; use of pencil and paper to   
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Table 4.2  

 

Summary of Utilization Schemes Developed by Students Working with Continuity 

Maplets 

Scheme 

Usage (U) or 

Instrumented Action 

(IA) 

Defining 

Characteristics 

Number of students 

employing scheme 

(n = 7) 

Graph-tracing U Trace graph with cursor 7 

Paper/pencil U 
Use of paper and pencil to 

compute, make chart, etc. 
7 

Check-change U 

Use of check feature to 

change response without 

intermediate action by 

student. 

6 

Calculator-compute U 
Use of graphing calculator to 

compute values. 
4 

Slider to find C U 

Use slider feature to find C 

value before or after finding 

limits, or to check value of 

C. 

6 

BB-decimals U 
Input decimal entries into the 

black box function. 
4 

Use inequality symbols 

to determine L/R 

continuity 

U 

Reason that the strict 

inequality symbols presented 

in the Piecewise Maplet 

made left/right continuity 

false 

3 

Check-rework-change IA 

After checking, visual 

evidence of student work or 

use of features before 

changing input. 

7 

Check-reflect-change IA 

After checking, auditory 

evidence of student 

reflection of features or 

inputs before changing 

response. 

5 
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Scheme 

Usage (U) or 

Instrumented Action 

(IA) 

Defining 

Characteristics 

Number of students 

employing scheme 

(n = 7) 

Prompts/directions IA 

Following specified 

directions and prompts of the 

Maplets. 

3 

Check-guess IA 

Checking and guessing 

answers repeatedly, without 

intermediate 

reflection/action. 

3 

Calculator-graph IA 

Use graphing calculator to 

graph formulas of Piecewise 

Maplet. 

4 

Hint-show IA 

Use of hint followed by use 

of show feature in Finding 

Value of C Maplet. 

3 

BB-whole numbers IA 
Input whole number entries 

into the black box function. 
4 

Function value – all 

true 
IA 

Input same response for limit 

and function value (from 

black box) and responding 

True to all continuity items. 
3 

 

compute, make charts, or notes; using the check function to change true/false responses 

(without reflection) and exchanging left/right limit responses that appeared due to the 

unique notation employed by the Maplets; and using the provided calculator to compute 

limit values. 

 Tracing the given graph to find the values of the left/right limits and the value of 

f(x) was employed by all seven students on two of the Maplets: Continuity given a Graph 

and Finding the value of C.  Students used the given graphs (see Figure 3.1) in a manner 

exemplified in this data from the Continuity given a Graph Maplet: 

 [New Function]   

 Graph w/ break, f defined on right side of graph by closed point (4, 5). 
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 Uses cursor to trace graph from the left and right to the break. 

 [input] Left limit = 4, Right limit = 5 

 [input] f(4) = 5, “Because of the open hole,” circles the point (4, 4) on the graph  

 w/cursor.   

 {Appears to mean that because (4, 4) is open, f is defined by closed point  

 at (4, 5).} 

 All seven students used paper and pencil at some point during their sessions.  

Elementary uses included: computing limit values from piecewise function formulas 

(Piecewise Function and Value of C); solving equation for C (Value of C); making a table 

of values (Black Box); and writing notes regarding left/right limit notation (one student’s 

attempt to keep the arrow notation correct).  While these uses were elementary, some 

became part instrumented action schemes. Students used the ‘check’ feature in 

elementary fashion when employing this feature to interchange answers to left and right 

limit items, and to switch true/false responses without reason.  This evidence suggests 

both uses of the check function: 

 [check] left and right limit; right continuity are incorrect 

 [change] exchanges left and right limit answers 

 “Man, I keep getting these mixed up!” 

 [change] right continuity from True to False 

 [check] all correct 

This student exchanged left and right limit answers three times during the session from 

which this evidence was gathered, implicating difficulty with the ‘arrow’ notation used to 

represent left and right limits (this student also commented about this unique notation in 
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the follow up interview – “I’ve never seen that before.”).  Additionally, this episode 

demonstrates the use of the check function for changing true/false items without 

explanation.  In these instances (employed by six of the students) the change in response, 

appeared to be a ‘process of elimination’ – if one wasn’t right, the other was.  More 

complex strategies involving true/false responses included student verbal reasoning for 

the change. 

 Finally, students used the calculator provided within the Maplet to determine the 

values of left/right limits in the Piecewise Function and Value of C Maplets.  Data 

indicate that four students used the calculator to substitute values of x into piecewise 

formulas given in both Maplets and compute the values that determined the left/right 

limits. 

Usage Schemes – Maplet Specific 

 Analysis of the data indicated the following usage schemes dependent to the 

Maplet employed: using the slider to find the value of C; entering decimals into the black 

box function; and using f(x) defining inequalities to determine the left/right continuity in 

Piecewise Function. 

 Evidence indicated three distinct usage schemes for using the slider to find the 

value of C: use before computing the left and right limits (six students); use after 

computing the left/right limits (three students did this without setting the left/right limits 

equal); and using the slider to check the value of C computed by setting the left and right 

limits equal (two students).  The graph/slider feature of this Maplet has directions above 

instructing, “Step 1: Estimate C by moving the slider” (appendix n).  However, students 

used this feature to estimate the value of C as well as to estimate the left and right limits 
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of the function (outlined in the previous section).  Usage schemes here are indicated by 

either manipulating the slider feature of the graph, or by entering values into the “C =” 

box below the graph.  Changing the value of C shifts one side of the piecewise graph so 

that it either moves closer to the other side, eventually becoming continuous, or moving 

that piece further away and still discontinuous.  Data indicating use of the slider to 

estimate C prior to finding the limits had students manipulating the slider and/or the  

“C =” entries until the graph became continuous.  Data indicated that three of the 

students used the slider to determine the value of C, even after correctly inputting the 

values of the left and right limit.  One such example from the data: 

 [New Function]  

 f (x) = {  

  

 Substitutes 1 into each formula and compute, on paper, then 

 [input] Left limit = 3 + C  [check] correct 

 [input] Right limit = -1 [check] correct 

 Moves slider and enters values into slider to estimate C = -4 makes graph 

 continuous 

 [input] C = -4  [check] correct 

In this example, the student used the slider to determine the value of C.  Directions for 

the exercise state, “Step 3.  Equate and Solve for C exactly.”  This student eschewed the 

directions and opted to use the slider as the primary method for computing the value of C.  

(Note: In subsequent problems, the investigator asked the student to complete the 

exercise without using the slider or graph.)  One student, (not the one from the above 

example) never did use the limits to compute the value of C.  The following example, 
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used by two students, indicates the use of the slider to check the value of C after setting 

the limits equal and computing as per the directions: 

 [New Function]  

 f (x) = {  

  

 Substitutes and evaluates left and right limits on paper 

 [input] Left limit = -2 - C  [check] correct 

 [input] Right limit = 3  [check] correct 

 Sets limits equal and computes, on paper C = -5 

 [enter] C slider = -5, “to check,” student says. 

 [input] C = -5  [check] correct 

 Five of the students in this study used the Black Box function provided by the 

Maplet with decimals to determine the left and right limit values of f(x).  Three of these 

students did so immediately upon starting the exercise.  All three of these students were 

enrolled in the same class and indicated that they had completed similar exercises 

recently.  Their data indicate the use of the black box to enter values for x (see appendix 

n) successively closer to the one indicated by the limit (i.e. for limit as x approaches 2, 

students entered 1.9, 1.99, and 1.999).  Two of these students used paper to construct a 

chart, again similar to exercises completed in their class, to determine the left and right 

limits.  Two students from the other school also used this strategy: one after asking, “Can 

I use decimals here?” and inputting a decimal; the other by ‘just trying’ a decimal input 

when frustrated with the exercise. 

 Three students used the inequalities of the formulas for the Piecewise Function to 

respond to the true/false questions, “f is continuous from the left/right”.  Data suggest that 
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these students used the ‘strict’ inequalities in the formulas defining the function to 

determine that open points existed on the graph (a graph was not presented in this 

Maplet): 

 “f continuous from the left, I would say false to that because they,” moving cursor 

 between inequalities in function definition, “do not have the ‘equal to’ sign under 

 them,” [input] Left/Right continuity = False. 

Instrumented Action Schemes – Multiple Maplets 

 Data analysis revealed that the following instrumented action schemes were used 

by students in more than one Maplet:  check-rework-change, check-reflect-change, 

prompts/directions, and guess-check.   

 The check-rework-change scheme presented itself in the data when students used 

the check feature followed by intermediate work, computation, tracing of the graph, 

employed a hint, etc. before changing an incorrect input.  All seven of the students 

employed this scheme in some fashion during their Maplet sessions.  This strategy 

considers the use of a variety of Maplet features.  One example of a student using the 

black box function to rework a problem (Note: BB represents an entry into black box 

function; the arrow represents the output of the function.): 

 [New Function] limit as x approaches 5 

  [enter] BB = 5  5, [input] f (5) = 5 

 “Now one below,” [enter] BB = 4  4, “So, still approaching 5,”  

 [input] Left limit = 5  

Later during this episode: 

 [check] Left limit is incorrect 
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 “Oh, ok, let me check.” 

 [enter] 4  4 

 “Oh, I just checked the point; I didn’t check everything above it.” 

 “But I will check 4.9,” [enter] 4.9  4, “Now it’s getting closer to 4 instead.”  

 [input] Left limit = 4 

 [check] all correct 

 “Ok, now I feel like I’m getting the hang of it.” 

This second example includes the application of a hint as part of the rework phase of this 

strategy: 

          *[check] Left/Right continuity are both incorrect. 

 Moves cursor to Left continuity. 

 Reads aloud the prompt at bottom of screen, “I don’t know where you went 

 wrong. Study the hints and answer again.” 

 [hint] Left continuity, reads aloud, “The function is continuous from the left when 

 the limit from the left is equal to the value of the function.” 

 [change] Left continuity = False,  

 “That would be false because the left limit equals 3 and the function equals 5.” 

 [change] Right continuity = False, “And that would be false for the same reason.” 

 [check] all correct 

 (*Note: This transcript also provides example of the prompts/directions strategy 

 described below.) 
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The check-rework-change scheme presented itself in the data through the visual evidence 

obtained in the recordings: actual student actions could be seen via the use of functions, 

cursor movements, Maplet ‘buttons’ being selected, etc.   

 The check-reflect-change scheme considered the verbal evidence in the absence 

of visual evidence that indicated students were engaged in reflection upon their work or 

features of the Maplets in the interim between the check and change.  Analysis of the data 

showed that five of the students employed this strategy while working with the Maplets.  

One example from Continuity given a Graph:  

 [new function] graph w/ break, closed point on right, open on left 

 

“This is one of those jumping ones.  So I know now that it doesn’t exist,”  

[input] limit exists = False 

Moves cursor from Left and Right sides of graph. 

[input] Left limit = 2, Right limit = 5, f(3) = 5 

“It is not continuous,” [input] Left/Right/f cont. = False, “at all” 

[check] Right continuity is incorrect 

“Oh! Okay! I see. There’s no hole there. Okay, I got it now.” 

[change] Right continuity = True 

[check] all correct 

{The graph had a closed point at (3, 5) and an open one at (3, 2).  She appears to 

realize how Left/Right continuity are defined on the graph.} 

Key to identifying this strategy is the verbal evidence, without visual evidence, which 

suggests student reflection prior to changing a response.  In this example, the student’s 

verbalization regarding the “hole” indicates the student reflected upon the graph feature 
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to determine that the closed point was indicative of continuity from the right side of the 

graph.    

 The prompts/directions scheme describes a strategy employed by three of the 

students who used either the directions provided in the Maplet exercises or the prompts 

given to them by hints or incorrect answers and followed the directives precisely. This 

evidence from the transcripts previously presented in discussing the check-rework-

change strategy, includes use of the prompts/directions scheme.  (Note: See previous 

transcript denoted with a *.)  In five of the six documented occurrences, students 

employing this strategy correctly answered Maplet items shortly thereafter, as indicated 

in the example provided above.  This strategy and example above also demonstrate 

Drijvers and Trouché’s contention that instrumented action schemes can be included or 

combined to form other instrumented action schemes.  Here, the use of prompts and 

directions became part of the check-rework-change scheme.  Inclusion of the 

prompts/directions scheme is indicated by the evidence of its apparent effectiveness. 

 Finally, the check-guess strategy was employed by three students.  This strategy 

presented itself in the evidence as guessing when a student appeared to be close to a 

correct answer, and when students appeared not to understand or reason at all regarding 

the answer.  Most instances of using this strategy in situations regarding closeness 

occurred while using the Maplet Finding the Value of C in which students initially used 

the graph to estimate either the left or right limit, but because the scale of the y-axis 

prevented accurate assessment of the limit value, students estimated then used the check 

feature repeatedly to determine the limit.  One student employed the guess and check 

strategy for finding the left and right limits during the Black Box session.  Unsure of how 
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to proceed with the black box function, she realized the limits were positive whole 

numbers (from previous Maplet sessions) and systematically guessed (1, 2, 3 …) until 

use of the check feature confirmed a correct response.  

Instrumented Action Schemes – Maplet Specific 

 Instrumented action schemes specific to Maplets include: calculator-graph, hint-

show, BB function value-all true, and BB with whole numbers.  

 Calculator-graph scheme title is used for the strategy that involved students using 

a graphing calculator (provided during sessions) to graph the formulas that defined the 

Piecewise Function Maplet exercises.  Four of the students used this as a beginning 

strategy for completing the limit and continuity questions.  All students employing this 

strategy did so in a manner similar to this example: 

 [New Function] 

 f (x) = {  

 

Graphs y = 5-x on graphing calculator and traces to x = 4 to estimate value 

[input] Left limit = 1 

Graphs y = 3 on calculator, traces, and [input] R limit = 3 

[input] f(4) = 3, “Because of the equal 4…3,” moves cursor over middle formula 

in function. 

Upon checking, the limit values and function value were correct.  All four of the students 

who employed this strategy correctly determined the left and right limits.  The 

investigator asked all students employing this method to work, “without using the 

calculator to graph” after they had completed one or two exercises in this fashion. 
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 The hint-show scheme was used by three of the students during their sessions with 

the Finding the Value of C Maplet.  This strategy consisted of using the hint feature 

followed by the show feature (‘shows’ the correct response).  Each instance of the use of 

this strategy occurred while students attempted to compute the limit in which the C 

variable was part of the correct response, such as in this episode: 

 [New Function] 

 f (x) = {  

 

[input] Right limit = -37  

[hint] appears to read silently, “Take the limit of the formula which is correct to    

 the right of -2.” 

Traces graph w/cursor from R to L.  Moves slider, then [enter] slider C = -1.5.   

Graph appears to be continuous, “So that would be C, right?”  

Uses cursor to circle -1.5 on C = slider 

[input] C= -1.5 

 Moves cursor to Right limit, “I still don’t know why that,” moves slider to C = -5. 

 [show] Right limit = -6 + 6*C 

“Ok.  I haven’t done this yet {in class}…it looks like they want  it in…with C 

included in it…um…so…try the next one.”  

As this data indicates, the student did not realize that the limit included the variable C and 

the employ of this hint-show strategy presented this to the students. 

 Two particular strategies were developed by students while engaged in the Black 

Box Function Maplet.  All four of the students from just one of the schools/classes 
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included in this study used the first of these schemes.  BB- whole numbers is the moniker 

given to the strategy in which students used whole numbers as inputs into the black box 

function.  Two of the students employing this strategy used the black box outputs to 

discern patterns that they used to determine the left and right limits.  Of these students, 

one eventually asked, “Can I use decimals?” and when told “yes” by the investigator, the 

student quickly proceeded to use decimal entries progressively closer to the value the 

limit approached.  The second of these two students continued to use the whole number 

and pattern strategy throughout the session and did so successfully.  A sample of this 

student’s work: 

 [New Function] limit of f(x) as x approaches 5 

After some initial ‘discovery’ activity to determine how to use the black box function, the 

student proceeded: 

 [enter BB] 4  11/5; 312/5; 213/5 

 “So it goes down by 1/5…so it’d be heading towards…4 is 11/5 and it be heading 

 towards 10/5,  which is 2,” [input] Left limit = 2, “I think.” 

  “So if we go to 5 from the right, that would be greater than 5.  So if we go 6,”  

 [enter] 65; 77; 89, 

 “So it would be heading towards 3, if the pattern is the same.”  

 [input] Right limit = 3 

Data indicates the other two students never gained proficiency for using the black box 

function or successfully completing the Maplet exercises, even though both eventually 

experimented with using decimal entries in the black box function.  In follow up 



www.manaraa.com

 

113 

 

interviews, each student indicated that, unlike the students from the other school, they 

had never done problems similar to this in class. 

 Three students employed the strategy of using the black box to determine the f(x) 

value for the given limit and using that as input for the left and right limits and the value 

of f(a) as well as responding with True to all continuity questions.  This strategy, which 

was titled function value-all true by the investigator, developed as a beginning ‘guess’ for 

students that appeared unsure of how to proceed with the black box function: 

 [New Function] limit of f(x)as x approaches 1 

 [enter BB] 4  16/5, 8  4/5, 15  -17/5, 2  22/5, 1  5 

 [input] Left limit = 5, Right limit = 5, f(1) = 5 

 “Does the limit of f exist? I guess so,” [input] limit exists = True, “since left and 

 right [limits] match up.” 

 [input] Left continuity = True, Right continuity = True, “because all are 5.” 

  {Appears to mean left/right limit and f(1) values.} 

 [check] all correct 

That all of this student’s responses were correct appeared to be a coincidence of the 

function given by this exercise.  The same student employed the same strategy in the next 

problem set attempted with different results (some responses were incorrect). 

Summary of Utilization Schemes 

 Analysis of the data for the first four Maplets used by students in this study 

revealed the strategies presented in this section.  Using Drijvers and Trouché’s 

instrumentation approach theory, both elementary, usage, and more complex, 

instrumented action, schemes were identified within the transcripts of students’ verbal 
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and visual action.  Definitions derived from the data, as well as exhibits of each from the 

data were presented in this section and are summarized in Table 4.2.  Definitions were 

developed for strategies used across multiple Maplets as well as those developed for 

specific Maplets; the strategies also included the use of the calculator, paper, and pencil 

provide during the Maplet interview sessions.  Results for the Epsilon-Delta Continuity 

Maplet will be considered in a separate section that follows the data on student 

interviews. 

Student Interview Responses to Maplet Features 

 At the conclusion of each Maplet session, student interviews were conducted.  

Two of the questions posed to students during these interviews asked them to consider 

the features of the Maplet just completed.  This section presents results of student 

responses to the questions: 

 What features of the Maplet were beneficial to you? 

 What features of the Maplet hindered you? 

These questions, asked in order to provide feedback to the Maplet developers about 

students’ impressions of the software, did provide data relevant to the research questions 

regarding the features of Maplets that contribute to understanding of continuity.  These 

results are organized by those features that students reported as beneficial/hindered them 

in multiple Maplets (General Maplet), followed by the features of specific Maplets 

(Maplet Specific) student reported as beneficial/hindering. 

General Maplet Features Beneficial/Hindering Student Understanding 

 Features students reported helpful: 
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Check Answer – All students reported this being a feature that helped them while 

using the Maplets (all students used this feature extensively during their sessions).  One 

student commented use of this feature increased understanding of continuity from the left 

and right.  The findings suggest this as an important feature of Maplets that contributes to 

understanding.   

Layout/Organization – Five students reported the layout of the Maplets as 

contributing to their understanding, citing the order and organization of the problems 

from limits at the top (left/right and function value) and continuity on the bottom of the 

screen. One student responded, “The questions were organized in a way that was helpful 

to understand; I was able to connect the first three answers (limits) to get the answers on 

the bottom (continuity).”  

Hints – Three students commented the hints were useful.  One student 

commented, “At first I didn’t know how to begin; I wasn’t sure what to do with the 

numbers.  But once I read the hints and thought about it, I realized I had to plug the 

numbers into the formula.”   

Features students felt hindered them: 

‘Arrow’ Notation for left/right limit – Five students expressed displeasure with the 

‘arrow’ notation used to express the left and right limits; most of these reported they 

would prefer it to be similar to their textbooks (superscript + or -). Students said that the 

notation led to confusion in determining where to enter their answer for the left and right 

limit. 

Hints – Two students responded that the ‘terminology’ of the hints was confusing.  

One student responded that the hints didn’t help, “They weren’t clear and didn’t tell me 
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what to do.  They gave me a definition, but not an explanation about what to do. The 

hints in all of these (Maplets) make me mad!”   

Check answer on True/False questions – One student responded that they really 

didn’t help her understand why the problem was wrong; she just changed to the other 

response and re-checked.  She suggested adding another option or using multiple choices. 

Maplet Specific Features Beneficial/Hindering Understanding 

 Features students reported as beneficial: 

Graph – Four students commented that the graph feature of the Continuity using a 

Graph and the Finding the Value of C Maplets was helpful. One student liked the ability 

to move the cursor over the graph and that it helped in determining the left and right 

limits of the function. 

Show feature - Three students mentioned the ‘show’ button as helping them while 

using the Finding the Value of C Maplet.  “It allowed me to figure out that C needed to be 

included in the limits, and that I needed to set the limits equal to each other,” said one 

student.  Another added, “It helped me to see that I had to plug the numbers into the 

equations.” 

The Black Box function – Three students commented positively about the ‘black 

box’ function.  Students liked that the function computed values for them and that they 

could input multiple values prior to answering the questions.  One student liked the 

challenge of the black box, “it really forced me to think about [the limits] in terms of 

function and not really try to think about a graph.” 
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 One student also commented about the variety of problems for the Continuity 

Using a Piecewise Function Maplet and one student commented on the error messages of 

the Black Box Maplet as beneficial. 

 Features students reported as hindering their understanding while using specific 

Maplets: 

The order of inequality – Two students expressed confusion that the last 

inequality of the Piecewise Function and Finding the Value of C Maplets were expressed 

in reverse order.  One student used an example in which the last formula of the function 

was expressed as x
2 

– 2x 4 < x.  This student reported mistaking the ‘4’ in the inequality 

as being a part of the formula and used it in computing the value of that formula. 

Instructions and directions – Four students commented about their confusion for 

not understanding how to use the Black Box and Finding the Value of C Maplets.  One 

student commented on the misunderstanding of the type of numbers that could be 

inputted in the black box function.  Another commented she couldn’t figure out what to 

do without extensive use of the hints and an error message.   

The next three features students responded as hindering their understanding are specific 

to the Finding the Value of C Maplet: 

Syntax for input of C expression – Three students commented about the 

formatting for the limit expressions that included C: “I got confused by the capital ‘C’ 

versus the little ‘c’ and the “*” for multiplication,” (the Maplet only accepted the capital 

form of ‘C’.) and; “Even though I had the expression right, it told me it was wrong.” 

Graph - Five students made comments about the graph.  These included 

complaints about the scaling: “The graph was pretty big, but I couldn’t tell when the 
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different parts met up,” “At times it looked like the graph was continuous, but it wasn’t.”   

Others expressed concern for the relationship between graph and the problem: “I didn’t 

understand what [the graph] had to do with finding these limits” and; “The graph didn’t 

help me to find the limits at all.  Even when I got the two graphs together, I didn’t know 

what it wanted me to do.” 

 

 Slider – All seven students expressed concern for the slider.  Their comments are 

best summarized by the student who stated: “I started by using the slider and just trying  

 

Table 4.3   

Summary of student responses to interview questions about Maplet features. 

Maplet              Beneficial Features            Features that Hinder 

Continuity Using             

a Graph 
Check answer (7) 

Organization/layout (5) 

Hints – availability (3) 

Graph (2) 

 

‘Arrow’ notation of limits (5) 

Hints – wording (2) 

Check for true/false items (1) 

Continuity Using a     

Piece-wise Function 
Check answer (3) 

Organization/layout (3) 

Hints – availability (1) 

Variety of problems (1) 

 

 

‘Arrow’ notation of limits (2) 

Hints – wording (2) 

No graph (2) 

Check for true/false items (1) 

Order of inequality (1) 

Continuity Using a      

Black Box Function 

 

Check answer (5) 

Black box function (3) 

Hints – availability (2) 

Error message (1) 

 

‘Arrow’ notation of limits (2) 

Instructions/directions (3) 

Check for true/false items (1) 

Hints – wording (1) 

No graph (2) 

 

Finding the Value of C 

that Makes a Piece-

wise Function 

Continuous 

Graph and slider (4) 

Check individual answers 

(3) 

Show answers (3) 

Hints – availability (2) 

 

Syntax of C expressions (3) 

Graph (5) 

Slider (7) 

Instructions/directions (4) 

Hints – wording (3) 

Order of inequality (2) 

 

 

Note. Parentheses indicate number of students reporting. (N = 7) 
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to find the value of C on the graph in order to make it continuous. Eventually I figured it 

out that the left and right limits had to be the same.  But with the C value in there, that 

threw me off for quite a few examples, I wasn’t sure what to do.  The values that I could 

input for C, I kept putting values for C in the blue box and knew eventually I could find 

the right value.  If it wasn’t for the slider, I would’ve focused on setting the limits equal 

to each other quicker.  The slider handicapped me.” 

 Two students also reported that the lack of a graph in the Piecewise Function and 

Black Box Maplets hindered their understanding.  

Summary 

 This section presented evidence and analysis of student data gathered from 

interviews conducted at the conclusion of each Maplet session with the subjects.  The 

presentation of this section has been organized by the student responses to features they 

found as beneficial to, or hindering of their completion of each Maplets exercises.  Table 

4.3 summarizes the student responses to the Maplet feature questions.  

Results from the Epsilon-Delta Maplet 

  As described in Chapter III, protocol for student sessions with the Epsilon-Delta 

Continuity Maplet differed from that of the other four Maplets.  In these sessions, 

students were asked to review an information sheet (Appendix F) prior to engaging in the 

Maplet exercise.  Students were then prompted to use the delta slider to determine two or 

three values satisfying the epsilon condition for the given limit.  After completing this 

exercise, the investigator then asked the students to use the Maplet to determine the 

largest value of delta that would satisfy a given epsilon condition for a limit.  These 

Maplet exercises were then repeated with a second limit.  Upon completing the Maplet 
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activities, students were given a follow-up activity prompting them to use the epsilon- 

delta method of the Maplet to explain why a piecewise function was not continuous 

(Appendix F).  Data presented here includes analysis of responses while students were 

engaged in the Maplet and follow-up activity. 

 The data indicate that all seven students, using a guessing and checking strategy 

were able to find an initial value for delta that satisfied the epsilon condition.  Students 

were then asked to find another value of delta, as instructed by the Maplet (Figure 4.4), 

and analysis shows that all seven were able to determine, within two attempts, a second 

delta (Note: not all prompts gave instructions to try smaller values of delta.).   

Additionally, data analyzed during this phase of the session shows that six of the seven 

students mentioned or made use of, via cursor movements, the graph feature of the 

Maplet – either noting the change in the delta band/rectangle on the graph, or the darker 

box defined by the upper and lower bounds of delta changing as the slider entries were 

changed. 

 The investigator then asked students to find the largest value of delta, to the 

nearest tenth, which satisfied the epsilon condition.  All seven students successfully 

completed this task and were able to state that once finding the largest value of delta, any 

value of delta equal to or less than would satisfy the epsilon condition.  Analysis indicate 

that five students stated that the largest value of delta coordinated with the ‘shaded box’ 

fitting within the epsilon band; furthermore, three students indicated that the function or 

graph of the function played a part in this value, as evident in this data: 

 “It’s [the graph of the function] close to a…line, which based on what we did with 

 the first one…it [the maximum delta value] should be close to what epsilon is”  



www.manaraa.com

 

121 

 

 

 The follow-up activity presented the participants with a graph of a piecewise 

function with a break in the graph (depicted in Figure 3.4); in which students were asked 

to explain why the function was not continuous at x = 2 by using the epsilon-delta 

method of the Maplet.  During this portion of the session, students had access to the 

preview sheet, the Maplet, the follow-up activity sheet, and writing instrument.  In 

analyzing this data, the students who referred or used each during their descriptions were 

noted.  This data is summarized in Table 4.4. 

 
 

Figure 4.4 Epsilon-Delta Continuity Maplet after correct input of delta 
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 Analysis of the follow-up activity also identified statements and/or actions that 

indicated levels of conceptual understanding of the use of the epsilon-delta method for 

describing continuity.  Subjects’ indicators of conceptual understanding included:  

 Ability to describe or draw δ or ε bands on graph to include correct 

orientation of each (δ with x-axis and ε with y-axis). 

 Draw δ or ε bands on graph and include numeric values for bands. 

 Describe, by drawing on the graph, discontinuity in terms of the δ and ε 

bands not overlapping or “meeting up”, similar in describing the ‘shaded 

box’ on Maplet graph. 

 

Table 4.4 
 

Items referred to or used in explaining discontinuity  

during Epsilon-Delta follow-up activity. 

Item 
Subjects employing item during explanation. 

A1 A2 A3 A4 B1 B2 B3 

Epsilon-Delta 

Maplet 
Yes   Yes  Yes Yes 

Preview Sheet             

Graph 
Yes Yes  Yes  Yes  

Preview Sheet             

Definitions 
 Yes    Yes  

Draw ε or δ 

Bands on 

Follow-Up 

Sheet Graph 

Yes Yes Yes Yes Yes Yes Yes 

Wrote 

Inequalities 

on Follow-Up 

Sheet 

 Yes Yes     
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 Describe, by drawing and explanation the discontinuity in terms of one 

point, usually (2, 3), not falling within the ε band of the other point. 

Student use of these descriptions is presented in Table 4.5. 

 
 The last two of these indicators provide evidence of student understanding, if 

even at a basic level, for continuity in terms of the epsilon-delta method of the Maplet.  

The two students providing evidence for this understanding using epsilon-delta regions 

used reasoning similar to student B2: 

B2: “From what I see on this graph here,” pointing to the ‘shaded box’ on the 

graph on the Maplet/computer screen, “it’s looking for one specific region that 

satisfies where δ and ε can be; where they are ascribed to.  And on this,” pointing 

to follow-up graph, “you’d have to account for two separate values for epsilon.” 

Interviewer:  “What do you mean by that?” 

Table 4.5 

Indicators of student understanding of continuity using epsilon-delta method. 

Indicator 
Subjects using indicator during explanation. 

A1 A2 A3 A4 B1 B2 B3 

Describe/draw  
δ or ε bands on 

graph 

Yes Yes Yes Yes Yes Yes Yes 

Draws  δ or ε 

bands with 

values 

 Yes   Yes  Yes 

Describe 

discontinuity 

by δ -ε regions 

Yes     Yes  

Describe 

discontinuity 

using ε band 

and proximity 

of points 

 Yes  Yes Yes  Yes 
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B2: “I mean that you would have your epsilon regions right here and right here,” 

draws two epsilon bands: above and below (2, 5); and above and below (2, 3), 

“and delta could remain the same, but your epsilon would have two separate 

values in accordance with that x.” 

Evidence indicating understanding of the discontinuity by using the epsilon-delta bands 

along with the proximity of the two key points on the graph include this response from 

student A4: 

A4: “It could be that the closed hole is further away from the open hole if you 

looked at it as epsilon and delta.” 

Interviewer:  “What do you mean?” 

A4: “For example, in the Maplet in this graph,” moves cursor to graph on screen, 

“epsilon and delta are usually within tenths or hundredths of each other.  You 

won’t find one that’s from the Maplet, from what I’ve seen so far, you wouldn’t 

find one,” pointing to the graph on the follow-up activity, “that’s this wide.” 

{Meaning between the two points – (2, 3) and (2, 5).} 

Student B3 also used proximity in describing the discontinuity: 

B3: “But on this,” follow-up activity graph, “there’s a gap.  So if you made the 

epsilon, if you draw the epsilon like that,” draws horizontal lines at y = 5.5 and y 

= 3.5, “This one,” points to the open point (2, 3), “would be left out.” 

 In summary, analysis of the data gathered while students engaged in the Epsilon-

Delta Continuity Maplet and follow-up activity reveal students’ thinking and 

understanding about this very abstract mathematical construct.  Student results of 

working with the Maplet indicated all were able to determine values of delta that satisfied 
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the epsilon condition, as well as determine the largest value of delta that satisfied a given 

epsilon.  Analysis of the follow-up activity included the tools and actions used by 

students while explaining the discontinuity of the graph, summarized in Table 4.4.  

Finally, data and analysis indicating conceptual understanding of epsilon-delta continuity 

was explained, examples given, and students demonstrating each understanding was 

presented in Table 4.5. 

Findings   

 Excluding the epsilon-delta Maplet, 28 sessions were conducted with students 

engaged in Maplet for Calculus applets about continuity; 25 of those ended with students 

demonstrating proficiency in completing the Maplet exercises – proficiency being 

measured by the students’ ability to complete three successive problems without error.  

Of the three cases in which students did not demonstrate proficiency, two involved the 

Finding the Value of C Maplet.  In both of these, the students appeared to reach a point of 

frustration with the exercise and the investigator decided to end the session.  The third 

occurred with the Black Box Function in which the student (one of the two who 

experienced difficulty with the Value of C Maplet) reached a level of frustration with the 

exercise.  This student reported, “We haven’t done anything like this in class,” during the 

interview following the session.  As students did not necessarily understand all parts of 

the exercises prior to beginning, development of understanding did occur during the 

Maplet sessions.  In this section, the understandings students developed of continuity, 

using the rubric based on Tall’s Three Worlds’ model are presented along with evidence 

of features and strategies that appeared most helpful in developing these understandings.  
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In addition to these, findings regarding the development of procedural understanding and 

the slider-graph feature of the Finding the Value of C Maplet is also presented. 

Student Understanding of Left/Right Continuity 

 One of the primary understandings gained from the first Maplet, Continuity Using 

a Graph, was the concept of left and right continuity.  None of the students answered all 

items correctly during their first three problems in sessions with this Maplet.  The most 

frequently missed items were the ‘f is continuous from the left’ and ‘f is continuous from 

the right’; both were true/false items.  Use of the ‘check’ feature showed that students’ 

missed one or both items during their first three problems with the Using a Graph 

Maplet.  Initially, students switched their response from the incorrect to correct answer, 

and then continued to the next problem.  However, second and third attempts and errors 

in responding prompted students to investigate their reasoning by using the graph feature 

or the ‘hint’ feature to determine how to respond or correct their incorrect responses.  All 

seven of the students eventually demonstrated understanding of left and right continuity; 

six employed embodied reasoning in concluding in a manner similar to the following 

student: 

 [New Function] Graph w/jump, closed at one end, open on other 

 Traces graph w/cursor 

 “I’ll start with that one,” [input] f(2) = 4. 

 “And, arrow’s going up, so that makes this one 2, since it’s coming up there,” 

 traces  graph left to right w/cursor, then [input] left limit = 2.  “And that makes 

 this one 4,” [input] right limit = 4. 

 “They do not match up, so all these will be false,” [input] left/right/f cont. = false 
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 “And if I’m right, this is false as well,” [input] limit exists = false 

 [check] right continuity is incorrect, pause  

 “Oh, it is continuous because there’s a closed dot,” [change] right continuity = 

 true, “that’s why.” 

This student, and others employed the ‘check’ function, along with an inspection of the 

graph, to ‘change’ the incorrect answer to the correct response by employing a 

developing understanding of left/right continuity in the embodied world by describing 

that the points on the graph were either undefined (open), indicating no continuity from 

that side, or defined (closed) indicating that continuity from that side existed.  One 

student employed the ‘hint’ feature, as documented in this episode: 

 [check] left/right continuity are incorrect 

 Reads prompt at bottom of screen, “I don’t know where you went wrong.  Study 

 the hints and answer again.” 

 [hint] left continuity, reads aloud, “The function is continuous from the left when 

 the limit from the left is equal to the value of the function.” 

 [change] left continuity = false, “That would be false because the left limit equals 

 3 and the function equals 5.” 

 [change] right continuity = false, “And that would be false for the same reason.” 

 [check] all correct 

This student, like the others, employed the ‘check’ feature, but instead of reviewing the 

graph, employed the ‘hint’ feature, then used the values of the limits to determine 

whether or not continuity from the left or right existed.  This demonstrates development 

in the symbolic world for the use of limits in determining the left/right continuity of the 
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function.  This student also employed a check-rework-change strategy in employing the 

hint.   

 The researcher noted that in both situations, the six students employing the graph 

to come to the embodied understanding and the one using limits; all seven needed at least 

three problems to become proficient in determining these answers.  This suggests that the 

variation of problems also played a part in the development of this understanding – as 

some students answered correctly to these items in one problem, only to answer 

incorrectly to left/right continuity items in a following exercise.  Only when the student 

gained understanding of these continuities, either embodied or symbolic, did they gain 

proficiency in completing the exercises. 

Developing Understanding of Continuity in the Symbolic World 

 The sequence, layout, and variety of the Maplet exercises appear to be helpful in 

developing understanding of continuity in the symbolic world.  The Maplets Continuity 

Given a Piecewise Function and Continuity Given a Black Box Function do not provide 

students with a graph.  However, this did not prevent four of the students from beginning 

their session with the Piecewise Function Maplet by graphing the function on a graphing 

calculator to allow them to determine the left and right limits, an indication of these 

students’ preference for working in the embodied world.  After one or two problems, 

these students were asked to stop graphing on the calculator and they, along with the 

other three students, used the function to compute the left and right limits.  Student 

explanations for their responses to the ‘limit exists’ and continuity questions either 

continued in the embodied world, or moved to blended explanations – incorporating 
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symbolic and physical descriptions.  Data show that four students continued explaining in 

embodied terms and three used blended explanations such as the following:  

 [input] true for all continuity items 

 “Because there’s only one value that f [and the left/right limits are] approaching, 

 so obviously, there’s no holes, or asymptotes, or jumps, or anything like that if 

 you were to graph this.” 

Whether or not a student started by graphing the piecewise rules did not appear to 

determine whether or not students used embodied or symbolic descriptions as two of the 

students who started by graphing used blended descriptions, while the other two used an 

embodied description.   

 By the end of the Black Box Function Maplet, all seven students used either 

symbolic or blended descriptions for stating their reasons for answering the ‘limit exists’ 

and continuity questions.  In reviewing the data to determine the features and strategies 

that promoted this change, four of the students had employed a ‘hint’ regarding 

continuity or the existence of the limit during their sessions with the first three Maplets.  

In two of the remaining three cases, it appeared that students connected their 

‘visualizations’ of the piecewise and black box functions to the values of the left/right 

limits and the function.  Each of these two students apparently were using the information 

from the piecewise and black box function visualize a graph of the function in a manner 

similar to this evidence from a student using the Black Box Maplet: 

 “This makes me begin to suspect that it is going to look something like a piece-

 wise function…maybe approaching from the left at 5 and from the right at 4.” 

 [input] left limit = 5, right limit = 4. 



www.manaraa.com

 

130 

 

 [enter] BB = 3  5, [input] f (3) = 5. 

 “So I’m going to say the limit does not exist because I have a feeling that it’s a 

 piecewise based on what I’ve entered.” 

 [input] limit exists = False 

 “I’m going to say it is continuous from the left because the limit as it approaches 

 from the left and f(x) are equal.” 

This episode documented the transition from the embodied to the symbolic use of the 

limits in determining the continuity of this function.  Neither of these two students used 

the ‘hint’ feature – however, examination of their transcripts showed use of the ‘check’ 

feature as well as the strategy of check-reflect-change in addition to the variety of 

exercises leading to the development of this understanding.  The seventh student 

demonstrated symbolic understanding of continuity and review of this student’s 

Piecewise and Black-Box transcripts provided evidence that this student came to describe 

continuity symbolically through the use of the ‘check’ feature combined with the strategy 

of check-reflect-change and by completing more exercises than any other student using 

the Piecewise Maplet.  This student attempted eleven problems using the Piecewise 

Maplet, four more than the most attempted by other students, even after being asked if 

she wanted to stop at an earlier point.  Eventually, during the tenth problem of this 

session, the student determined: 

 [input] left limit = 2, right limit = 4, f(5) = 4. 

 “They’re not continuous,” [input] left/right/function continuity = False, “because 

 they’re not equal to,” moves the cursor under the inequality 5<x. 
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 {Student appears to mean that the discontinuities are from the inequality being 

strict, and as stated by the student previously, ‘there’s a hole there’.} 

  “And I think it exists,” [input] limit exists = True 

 [check] limit exists, right continuity are incorrect 

  “Oh!”, moves cursor to right continuity problem, “I understand the continuity 

part!”  [changes] right continuity = True, and moves the cursor between the 

middle and bottom formulas, “because the 4 does not exist at 4.” 

[changes] limit exist = F, “because there’s two of them.” Moves cursor between 

the two 4’s in the function, “Which is why you can’t have …,” long pause, “I’m 

pretty sure…now I understand why I got that one wrong.” 

[check] all correct 

 Investigator: asks about the reason for changing the right continuity response 

“Because up here,” the student moves cursor between the two 4’s in the formula 

of f, “there’s two points where it equals 4.  And one of them, it does exist, which 

would be at x = 5,” moves cursor over middle formula, “So it’s continuous up 

until this point, because the hole, I guess, is filled.”  

This episode demonstrated that the student eventually came to the understanding that 

continuity from the left or right depends on the value of the limit being equal to the 

function value.  In explaining how the, “hole, I guess, is filled,” an embodied statement, 

the student demonstrated the ability to work in the symbolic world and explain in the 

embodied world.  After this, the student quickly and correctly completed an eleventh 

exercise, and then asked to be done with the session. 
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Proceptual-Symbolic Use of Continuity to Find C 

 The first three Maplets required students to determine the continuity of a function 

using the left and right limits of the function.  The Finding the Value of C Maplet worked 

from the premise that the function was to be continuous and students needed to determine 

the value of the variable C that made it so.  This required a proceptual-symbolic 

understanding that if a function is continuous the conditions of the definition are also 

true.  In particular, to complete this Maplet exercise, students had to come to the 

understanding that continuity implies that the left and right limits of the function are 

equal.  Six of the seven students came to understanding – one that is necessary to find the 

value of C in this Maplet the way the developers intended.  An example from one 

student’s experience: 

Computes left limit by substituting x = -2 

[input] left limit = 2, [check] correct 

Computes right limit by substitution with x = -2 

[input] right limit =4*C + 24, [check] correct 

“So you set 4*C + 24 = 2,” verbally solves the equation to get -11/2 

[input] C = -11/2, [check] correct 

This episode is representative of the experience of the six students who found the value 

of the C variable by setting the left and right limits equal and solving. 

 The one student who did not use this approach, successfully found the value of C 

for all problems she attempted (seven) by using the slider provided.  While the 

investigator eventually asked the other six students to work the problems without using 

the slider (discussed further in another section), this student was the first to complete the 



www.manaraa.com

 

133 

 

Finding the Value of C Maplet session and used the slider during the entire session.  By 

the end of the session, this student was able to determine correctly the left and right 

limits; however, the student did not set these limits equal to each other to find the C 

variable. 

Formal Thinking: Development of a Rule for Overall Continuity 

 The first three Maplets presented to the students: Continuity Using a Graph, 

Continuity Using a Piecewise Function, and Continuity Using a Black Box Function all 

posed the same questions.  In each, students were instructed to find the limit of a function 

from the left and right, and the value of the function.  The Maplets then instructed 

students to answer true/false items regarding the existence of the limit of the function and 

continuity from the left, right, and the overall continuity of the function.  As discussed in 

the previous sections, during the course of working through the first three, all students 

moved from an embodied view of continuity to either a blended or symbolic perspective 

by the end of the third session.  However, during their work with these Maplets, students 

demonstrated formal thinking in their understanding of continuity and its properties. 

  Four students verbalized their thinking for the overall continuity of a function in 

terms of the continuity from the left and right.  The operational definition for continuity, 

as given by the Maplet hint for the ‘f is continuous’ prompt is: “The function is 

continuous when the limit from the left, the limit from the right and the value are all 

equal.”  This implies checking the values of the left and right limits and comparing them 

to the value of the function.  However, these four students verbalized their understanding 

of continuity in terms of the left and right continuities, similar to this student: 

[input] left/right continuous = True 
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“Continuous from the left would be true, and the right would also be true.  Which 

means [the function] is continuous.”  

[input] f continuous = True 

Similarly, another student reasoned a discontinuity in terms of left and right continuities: 

“It is continuous from the right but not from the left,”  

[input] left continuity = False, right continuity = True 

“Which means it’s not continuous overall.”  

[input] f continuous = False 

Review of transcripts and strategy analysis showed that development of this rule for 

determining the overall continuity of a function appears to have come from students 

using the ‘check’ feature with the continuity items, as well as check-reflect-change with a 

variety of problems to determine that the item ‘f is continuous’ was true only when ‘f is 

continuous from the left’ and ‘f is continuous from the right’ were also true. 

Formal Thinking: Embodied Understanding of Epsilon-Delta Continuity 

 As noted in the presentation of data with the Epsilon-Delta Continuity Maplet, six 

of the students demonstrated the ability to describe continuity using epsilon-delta ‘bands’ 

similar to those presented in the Maplet.  This suggests a formal thinking in the embodied 

world by being able to describe the discontinuity in terms of ‘nearness’ or ‘closeness’ of 

the left and right sides of the function presented in the follow up activity for this Maplet.  

All students used the graph/slider and the ‘check’ feature while working with the Maplet, 

as well as the check-reflect-change strategy when the investigator asked the students to 

find the largest delta that satisfied the given epsilon condition. 
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The Development of Procedural Understanding 

 Many of the strategies and feature of the Maplets helped students develop 

understanding of the procedures necessary for solving the Maplet exercises.  These 

understandings fell into two categories: notation and formatting, and understanding 

procedures for solving the problems. 

 Various notations and conventions used in the Maplet presentation of the 

problems initially confused students, but understanding them was essential for students to 

complete the Maplet exercises.  The ‘arrow’ notation used in the first three Maplets for 

left and right limits was one example of this.  Most student errors for left and right limit 

were a result of putting the value of the left limit in the right limit answer space and vice-

versa.  Students used the ‘check’ feature and the ‘hint’ feature in determining the correct 

response space for left and right limits.  Once familiar with this convention, most student 

errors because of this confusion dissipated, however, students still responded negatively 

to this notation in the interviews.  Another notation that proved difficult for students was 

the presentation of inequalities in the formulas for the piecewise functions.  In particular, 

the last rule in each function used inequalities of the form “a < x”.  Students reported 

this notation interfered with their progress in two ways.  First, the notation led to 

confusion that this rule was the one needed to determine the right limit; and second, the 

numeric part of the notation, the ‘a’ number, was used by three students in computing the 

value of the right limit.  In this, the spacing between the function symbolic statement and 

inequality for some of the exercises was so close that students mistook the number for 

part of the function statement.  Use of the ‘check’ and ‘show’ feature combined with the 

check-rework-change, as well as the check-reflect-change enabled students to understand 
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this notation.  All students experienced difficulty with the variable expression required 

for one of the limits during their use of the Finding the Value of C Maplet.  In completing 

this Maplet, all seven students eventually determined the correct left and right limits, 

however, all struggled to determine that one of the limits would be an expression with the 

variable C in it.  Furthermore, once students determined the variable expression, they all 

experienced difficulty in the formatting required by the Maplet.  In determining that a 

variable expression was required, all seven students used the ‘hint’ feature.  Of these 

students, five also used the ‘show’ feature using the hint-show strategy.  This enabled the 

students to understand these answers would be expressions as opposed to values, as 

demonstrated here: 

[show] right limit = -6 + 6*C 

“Ok.  I haven’t done this yet [in class]…it looks like they want  it in…with C 

included in it…um…so…try the next one.”  

A second challenge students experienced with these responses was the particular format 

of the answer.  As seen in the example above, the program was particular in the way the 

operators were expressed and in the variable needing to be capitalized.  During the 

investigation, two of the students used the ‘show’ feature to determine the appropriate 

format after their ‘correct’ responses were ‘incorrect’ according to the Maplet, with the 

help of the investigator.  The investigator assisted the other students in entering their 

answers in the proper form. 

 Each of the Maplets included in this study required students to provide answers to 

problems about continuity.  In the solving of these problems, most of the features and 

strategies used by students impacted the procedural understanding of ‘how’ to determine 
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the correct solutions on a consistent basis.  As noted earlier, the ‘check’ feature and the 

ability to ‘change’ answers for each of the problems provided students unlimited 

opportunity to try different answers and strategies.  Those students who understood the 

‘hints’ quickly understood how to proceed with the items for which a hint was accessed.  

As mentioned in the previous section regarding the Finding the Value of C Maplet, the 

‘hint’ combined with ‘show’ features enabled students to determine the correct form of 

the answer.  This combination also provided students with the procedure for finding the 

limits from the left and right with the instruction from the hint, “Take the limit of the 

formula which is correct to the left of -2.”  After using this hint students were soon able 

to determine that the procedure was to substitute x with -2 and compute the function 

value for that ‘piece’.  Many of the examples provided in the presentation of the Features 

Used by Students and the Utilization Schemes Used by Students sections exemplify the 

use of features and strategies for developing procedural understanding of the continuity 

problems given by the Maplets. 

Graph and Slider – A Feature that Prevented Understanding 

 All seven students struggled to complete the Finding the Value of C Maplet.  One 

of the reasons for this difficulty, outlined in the previous section, was that one limit was a 

variable expression that included the C variable.  This difficulty was easily overcome 

once the students understood: 1) the correct answer was a variable expression; and 2) the 

correct formatting of the expression required by the Maplet.  However, the graph and 

slider feature presented in this Maplet inhibited student understanding at the beginning of 

each of their sessions.   
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 Directions for the Maplet required students to use the slider to estimate the value 

of C that makes the function continuous.  From there, students were to use the given 

piecewise function to determine the left and right limits of the function, and then equate 

the two limits and solve for the C variable.  All students began as instructed and were 

able to estimate the value of C that made the two sides of the graph come together in one 

continuous graph.  However, after this, most students continued to use the graph-trace 

strategy to determine the left and right limits, as exemplified here: 

Reads left limit problem, moves cursor to graph, traces graph from L to R,  

“So it goes over here to 2, it seems to go down, and this is a -50,” {reading y-axis 

scale on graph} “So it goes by tens.  So we’re looking at 2,” moves cursor from 

y-axis, right, to f graph, “so it looks to be about -10” 

[input] left limit = -10 

 [check] left limit, incorrect, “It’s not -10 

 [hint] left limit, reads aloud 

Moves cursor to graph, “So the left is over here…you follow it,” tracing graph left 

to right with cursor, “as it approaches 2…so it’s going down…it looks like it’s 

towards -10”, moves cursor to left limit, “but maybe it’s just less than…-5” 

 [input] left limit = -5, [check] incorrect 

 “No.” 

 [hint] reads aloud, “I don’t know.” 

[show] left limit = -6, “Oh, so its close, you just can’t really tell,” 

This student used the graph-tracing strategy; however, the scale of the y-axis prevented 

an accurate determination of the value of the left limit.  Other students used a similar 
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approach, even after repeated attempts at using the graph and continually getting 

feedback that there answers were incorrect.   

 One student did realize that use of the slider prohibited understanding of the 

procedure needed to successfully complete this exercise: 

Moves cursor to graph, “Approaching from the left, it would be at,”  moves cursor 

along graph from left to right, “50”.   

[input] left limit = 50 

“Approaching from the right,” tracing graph w/cursor from right to left.  Stops. 

Pauses.  

Moves cursor to top formula in f, “The C is in the top one now...,” moves cursor 

to left limit, “Yeah, it’s not right.” [deletes] left limit = 50.  

“Maybe if I try not using the graph.” 

{Awareness that graph is not helping} 

 On paper, substitutes 2 into x for top formula and computes to get 12-2C.   

 [input] left limit = 12-2*C {with formatting help from investigator} 

 [check] left limit is correct 

“Ok, I’m going to solve this one on paper too,” moves cursor to bottom formula 

in f, “because I can’t tell what number that is.” Moves cursor to R limit on graph.  

Computes by replacing x with 2 to get -20 

 [input] right limit = -20, [check] correct 

After this problem, the student correctly used substitution to find the values of the left 

and right limits, however, the student continued to use the slider to answer for the value 

of C in all problems.  This student was the first to complete the Finding the Value of C 
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Maplet session.  In sessions with the other students, the investigator initially allowed 

students to complete the Maplet as presented, however, after two or three problems, he 

asked students to complete the exercise without using the slider or graph.  Once the 

feature was removed, all students, through ‘hints’, ‘show’, and using the strategies of 

check-reflect-change and check-rework-change came to understand not only how to find 

the limits by substitution, but also how to determine the value of C by equating the limits. 

Summary 

 The results presented in this chapter began with evidence and analysis that led to 

the development of a rubric for analyzing student understanding of continuity concepts 

with respect to Tall’s Three Worlds model while engaged in Maplets for Calculus 

exercises and activities (Figure 4.1).  Oral data obtained from students during recording 

sessions provided examples of evidence indicative of particular levels of understanding.  

Next, an analysis of Maplet features used by students was presented to include the 

features used, evidence of how these features were used, and a record of the frequency of 

their use.  Students used the ‘check’ feature most frequently (Table 4.1).  The work of 

Drijvers and Trouché informed data analysis for the development of utilization schemes 

employed by students as they worked with Maplets.  These schemes were presented as 

usage schemes and instrumented actions schemes.  Descriptions and evidence from the 

data were provided for each as well as analysis for the number of students who employed 

each scheme (Table 4.2).  From this data, it was shown that all seven participants in this 

study employed Graph-tracing, Paper and pencil, and Check-rework-change strategies.  

Student interviews conducted after Maplet recording sessions elicited responses from 

students to questions about the features they felt helped them or hindered them while 
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completing the exercises as well as providing insights into how the feature contributed to 

understanding of continuity.  Response data to these questions was presented, along with 

the summary of Table 4.3.  Analysis of this data showed that the Check answer and the 

availability of Hints features were the most frequently cited to be helpful while the 

‘Arrow’ notation and the wording of the Hints were most commonly cited as hindering 

their progress.  The Epsilon-Delta Definition of Continuity Maplet contained 

mathematical content students had not been taught prior to the time this study was 

conducted, so results from the investigator developed activities for using this Maplet 

were presented in a special section of the results.  This data analysis included: student use 

of the Maplet, engagement of tools used in answering the follow-up activity question, and 

presentation of student data and analysis indicating understanding obtained for the 

epsilon-delta definition of continuity.   

 The last section of this chapter described the findings of this study.  These 

included: evidence about the features of Maplets and strategies used that developed 

students’ embodied and symbolic understanding of left and right continuity; evidence for 

the sequencing of Maplets along with the features and strategies that contribute to 

understanding of continuity in the symbolic world; the development of proceptual-

symbolic understanding of the definition of continuity to find the value of C; evidence of 

students using the concepts of left and right continuity develop a formal ‘rule’ for 

determining the overall continuity of a function; development of formal thinking in the 

embodied world for epsilon-delta continuity; the contributions of Maplets to procedural 

understanding; and the evidence supporting the finding of the graph/slider feature of the 
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Finding the Value of C inhibiting the development of understanding of continuity 

concepts. 
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V. Conclusion 

 

Introduction 

  This final chapter begins with a summary of this study, then presents 

conclusions and discussion about the findings.  Recommendations for the use and 

development of applets for teaching and learning mathematics will follow.  Suggestions 

for future research conclude this chapter. 

Summary 

 The recent development of the Common Core State Standards for Mathematics 

continues the advocacy of almost a century of mathematics educators’ research that 

informs the community that teaching mathematics for understanding is beneficial to 

students.  Additionally, technological advances of the late 20
th

 and early 21
st
 centuries 

have made computers and more specifically, mobile technologies readily available to 

students and teachers.  As these technologies are dependent on applications, “applets,” 

for human interaction, the problem statement for this investigation asked, “Is it possible 

to determine the characteristics of applets that lead students toward greater understanding 

of mathematical concepts?  Can we determine specific actions and strategies learners 

develop while using applets that increase their understanding?  In particular, which 

features of Maplets for Calculus lead students toward greater understanding of continuity 

of functions?  Can we determine specific actions and strategies students develop while 

using Maplets that increase their understanding?”  Student understanding of the concept 

of continuity, an under-represented topic in mathematics education literature, was the 
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topic considered in this investigation as students used the collection of computer applets 

Maplets for Calculus.  The research questions guiding this study addressed the features of 

the Maplets for Calculus that students used and impact of those features on students’ 

understanding of continuity, as well as the effectiveness of strategies students developed 

while working with these applets.   

 The literature review for this study presented historic evidence of the call for 

teaching mathematics for understanding.  From Brownell’s early study (1929) with 

“students having ‘special difficulty’ in arithmetic” in which it was documented that 

students taught number strategies and properties improved their performance on 

arithmetic tasks, to the NCTM reports of the 1980’s and 90’s, and more recent NRC and 

CCSSM, the emphasis on teaching mathematics for conceptual understanding continues.  

The influence of technology on teaching and learning mathematics, including the 

endorsement of NCTM, NRC, and CCSSM for using technology in mathematics 

education, as well as recent studies regarding the potential of mobile technologies for 

improving conceptual understanding were also presented.  The instrumental approach 

theory, as developed by Drijvers and Trouché, provided the theoretical background for 

investigating the applet features and the strategies used by students working with the 

Maplets for Calculus.  Development of this theory and studies engaging the instrumental 

approach were reviewed.  Ericsson and Simon’s formal development of the ‘think aloud’ 

method for collecting cognitive data and the protocols developed by van Someren, 

Barnard, and Sandberg provided the basis for data collection of this study.  David Tall’s 

‘Three Worlds’ model for the development of formal thinking in mathematics provided a 

theoretical background for investigating students’ conceptual understanding of 
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continuity.   Research by Núñez et al. and others regarding the challenges of learning 

continuity concepts as well as studies of continuity concluded the literature review. 

 The methods employed during this investigation included recruiting seven high 

school students from two schools in northern South Carolina.  These subjects were 

selected with the help of their AP Calculus instructors and the students were rewarded 

with a gift card for their participation.  Each student met with the investigator for five 

sessions, working with Maplet for Calculus applets about continuity.  During these 

sessions, screen capture software recorded the computer activity and oral data as students 

thought aloud while completing the Maplet activities on a laptop computer.  Protocol for 

the student session with the Epsilon-Delta Continuity Maplet was modified, as it became 

apparent to the investigator that students had not been introduced to the epsilon-delta 

definition of continuity by their classroom teachers (Maplets are designed to support 

classroom instruction).  Recordings were transcribed to record students’ verbal data as 

well as their computer activity.  The episodes were coded by the research for: Maplet 

features used, strategies used, and conceptual understanding.  Analysis of the data 

included: development of rubric for documenting conceptual understanding of continuity 

concepts based on student verbalizations; frequency of Maplet features used by students; 

identification and description of utilization schemes, usage and instrumented action, and 

student use; and student interview reports regarding the benefits of Maplet features. 

 The data presentation included the rubric developed from the student verbal 

protocols to document growth in understanding of continuity in Tall’s Three Worlds: 

embodied, symbolic, and formal.  This data was summarized into a rubric diagram that 

was presented in Figure 4.1.  Examples from the data regarding the use of Maplet 



www.manaraa.com

 

146 

 

features were presented as well as the determination that the ‘check’ feature was most 

frequently used by students (Table 4.1).  Further examples from the data were used to 

describe and identify both usage and instrumented action schemes developed by students.  

In addition to this identification, the number of students employing each scheme was 

presented (Table 4.2).  Student interviews were conducted at the end of each Maplet 

session and students were asked for their opinion about Maplet features that were 

beneficial or detrimental to their learning.  Students reported the ‘check’ and the ‘hints’ 

as most beneficial and the ‘arrow’ notation for left/right limits and the wording of the 

hints as most detrimental.  These results are summarized in Table 4.3.  Data and analysis 

of the ‘epsilon-delta’ Maplet showed that all students used the slider and ‘check’ features 

to successfully find values of delta that satisfied the given epsilon for the Maplet 

exercises and that all students used these features successfully to find the largest value of 

delta that satisfied epsilon condition for any given limit.  Student use of ‘tools’ for 

answering the epsilon-delta follow-up activity were presented (Table 4.4).  Analysis for 

student understanding of continuity using epsilon-delta revealed that all students 

expressed basic understanding of epsilon-delta continuity.  The findings of this study 

included documentation of the gains in student understanding of continuity within the 

framework of Tall’s Three Worlds along with the features and strategies used prior to 

student verbal expression of the understanding.  These findings included documentation 

of: understanding of left/right continuity; understanding of continuity in symbolic world; 

proceptual-symbolic use of continuity to find C variable; formal thinking in developing a 

rule for overall continuity; formal thinking in embodied understanding of epsilon-delta 
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continuity; development of procedural understanding; and graph-slider feature of the 

Finding the Value of C Maplet inhibiting understanding. 

Conclusions and Discussion 

 The research questions of this study were: 

1. The Maplets for Calculus that present continuity exercises include interactive 

graphics, hints, “check” answer, and other features.  To what degree do each 

of these features help promote conceptual understanding of continuity with 

respect to Tall’s Three Worlds (embodied, symbolic, and formal)? 

2. Maplets on continuity also allow students to use multiple features 

simultaneously.  Are there particular combinations of features, e.g. utilization 

schemes, students develop that lead to a more ‘formal’ understanding of 

continuity?  Are there utilization schemes that inhibit understanding of 

continuity?   

3. In addition to the computer and Maplet software, students were allowed the 

use of paper, pencil, and a calculator. Are there any other patterns of behavior 

or thought that students exhibited while engaged with the Maplets that 

promote/inhibit the development of conceptual understanding?   

This section will answer these questions in light of the findings presented in Chapter IV 

and the research and theory informing this study presented in Chapter II. 

Features of Maplets that Promote Understanding 

 From the findings, it is evident that the ‘check’ feature and the ‘change’ feature 

contributed to conceptual and procedural understanding of continuity concepts.  The 

instrumental genesis for use of these features developed quickly in students’ Maplet 
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sessions. Each student used the features once or twice before the use of the features 

reached the ‘instrument’ level.  As discussed by Drijvers and Trouché (2008) an artifact, 

in this case the features of ‘check’ and ‘change,’ only becomes an instrument when 

combined with a scheme (p. 368).  Once acclimated to how these features worked, 

students used them repeatedly in their attempts to answer the exercises correctly.  That 

these two features also became part of more complex instrumented action schemes 

provided evidence that the features were important to students.  The use of these two 

features apparently allowed students to try different strategies, and encouraged them to 

either reflect or change course of action when their answers were incorrect.   

 The ‘hint’ feature promoted understanding of concepts and procedures.  However, 

the hints did not always help.  In interviews, some students expressed concern about the 

wording of the hints as being “too formal” and difficult to understand.  Students who did 

understand the hints, appeared to gain in procedural and conceptual understanding, as 

following the use of the hint, they were able to proceed correctly and express orally 

understanding of the question, item, or concept for which they sought the hint, as 

exemplified in this portion of data presented previously in Chapter 4: 

 [hint] left continuity, reads aloud, “The function is continuous from the left when 

 the limit from the left is equal to the value of the function.” 

 [change] left continuity = false, “That would be false because the left limit equals 

 3 and the function equals 5.” 

This student gained the symbolic understanding of left/right continuity by using the hint 

for left continuity, as well as procedural understanding needed for finding the correct 

answers to subsequent items.  Even students who failed to understand and therefore did 
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not use the hints reported (in interviews) that they liked the idea of having hints available.  

In this situation, students understood the potential for the use of the ‘hint’ feature, 

however, they lacked the understanding required to apply this tool to the given problem 

situation.  In terms of Vygotsky’s “instrumental method,” a tool only becomes an 

instrument in the act of being used (1981, p. 137); for students who did not understand 

them, the hints remained an unused tool.   

 The variety of problems presented by the Maplets contributed to student 

understanding of the concepts of continuity.  This appears to be the most important factor 

in students developing an understanding of the concept of left and right continuity.  As 

presented in the findings, all seven students needed at least three exercises before 

becoming proficient in answering these exercises.  While not a ‘tool’ that could become 

an ‘instrument’ to the students, the effect of this Maplet feature forced students to 

reconsider their hypothesis for answering the continuity items by presenting functions 

with different left/right continuities.    

 The graphs, black box function, and sliders features contributed to understanding 

of continuity concepts in three of the Maplets: Continuity Using a Graph, Continuity 

Using a Black Box Function, and Epsilon-Delta Continuity.  Gains in all three situations 

depended on the Maplet being used at the time.  For Continuity Using a Graph, the graph 

feature (Figure 3.1) allowed student to develop understanding of continuity concepts and 

procedures in what Tall (2008) referred to as a concept-embodied world, in which 

physically sensed properties (visually in this case) become part of a mental image.  

Procedurally, students used the graphing feature to find the left/right limits and the value 

of the function.  Conceptually, students described continuity from the left/right by using 
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the open or closed points of the graph to describe why the left/right continuity items were 

true/false.  The Black Box Function provided students with another method to determine 

the left/right limits and the value of a function – helping students understand the 

procedure.  In providing only numeric outputs, this function allowed students to grow in a 

proceptual-symbolic sense, as they were expected to apply the definition of left/right and 

overall continuity in order to answer these true/false items correctly.  The graph/slider of 

the Epsilon-Delta Continuity Maplet provided a basis for student conceptual 

understanding in the axiomatic-formal world by developing an embodied sense of 

epsilon-delta continuity. 

 The ‘show’ feature, used primarily in the Finding the Value of C Maplet 

contributed to student understanding of the procedure needed to find the value of C by 

presenting students the variable expression required for the left/right limits and also 

displaying the exact symbols required for the variable expression.  From this, students 

appeared to be able to determine that the values needed to substitute into the formulas of 

the function to solve the equation.  While not used extensively, the researcher believes 

this is a feature students could be encouraged to employ more frequently, especially when 

students become frustrated in trying to determine correct ways to answer items. 

Utilization Schemes that Promote Understanding 

  The findings show that the strategies of check-reflect-change and check-rework-

change promoted growth in conceptual understanding of continuity concepts.  These two 

strategies are both what Drijvers and Trouché (2008) classify as instrumented action 

schemes in that they incorporate a combination of tools or strategies.  The check-reflect-

change strategy indicates students did not perform any intermediate work prior to 
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changing an incorrect response, instead, the student verbalized internal thinking about the 

problem or the process used to solve.  The investigator intentionally identified the 

strategy check-rework-change to include the various other ‘tools’ and strategies students 

employed while using this scheme.  Features of the Maplets included in the ‘rework’ 

phase of this strategy included: graphs/slider/black box function, hints, and show.  Tools 

other than the ones provided by the Maplets used in this strategy included: paper, pencil, 

and a calculator.  Strategies incorporated in the check-rework-change scheme included:  

graph-tracing, paper/pencil, calculator-compute, slider to find C, BB-decimals, 

calculator-graph, and hint-show.   These two strategies accounted for the growth in 

understanding of left/right continuity when using the graph feature for an embodied 

understanding, and accounted for symbolic representation/verbalization of these 

continuities when using the piecewise and black box functions.  The growth in symbolic 

understanding of continuity by finding the value of C came from the check-rework-

change, as students used the hint-show during the rework phase to determine the form of 

the left/right limits as well as understanding that these limits needed to be equated  in 

order to solve for C, thus promoting the proceptual-symbolic understanding of the 

definition of continuity (i.e. that a function is continuous implies the left limit equals the 

right limit).  Both strategies were enabled by the feature of the Maplets that allowed 

students to continue working on a problem indefinitely.   

 Though employed by only three students, the prompts/directions, an instrumented 

action scheme, appeared to have potential for helping students with their understanding 

of continuity concepts.  Each Maplet featured directions, numbered, for users to follow in 

completing the Maplet exercises.  Upon answering a question incorrectly, a prompt 
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would appear in a box at the bottom of the screen suggesting a next step to the user (i.e. 

“Try looking at the hints and answering again.”).  Evidence of students using this 

strategy included verbalization of the direction or prompt, followed by student action 

suggested by the prompt.  Only one student consistently read the directions and prompts; 

two other students did so occasionally. Here is an example one student’s use of directions 

and the prompt given by a hint: 

[new function] open on left, open on right, and closed 3
rd

 point defining f at 3 

Reads direction at top of screen, “Step 1. Enter the limit from the left, the limit 

from the right, and the value of the function in the boxes at the right.” 

Moves cursor to left limit, “So the limit of f(x) as x goes to 2,”  

Moves cursor to left part of graph, “from the right would be…goes to 2 at x = 3.”  

Moves cursor to left limit, “that’s from the left.” 

[hint] Appears to read silently, The limit from the left is the height the graph 

approaches as x approaches 3 from the left. 

“Ok, from the left, which would be 3.”  

[input] left limit = 3 

{Appears to have used hint to clarify this was the left limit.} 

This episode, along with the episode presented in Chapter IV (pages 106-7) of this 

student using a prompt from an incorrect answer to check the hints for left continuity, 

provides evidence of the potential use of the directions and prompts in developing 

understanding of procedures and concepts. 

 The hint-show strategy, an instrumented action scheme combining the use of a 

‘hint’ followed by the ‘show’ feature, promoted procedural understanding required for 
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finding the left/right limits of the Finding the Value of C Maplet.  Use of this strategy 

allowed students to recognizing the C variable expression needed in the correct response 

to left/right limit items. Students used the ‘show’ feature to determine that the limit 

expression included the C variable as part of the piecewise function presented in the 

problem.  Soon after this realization, students determined that substituting the given value 

of x into this formula yielded the correct response. 

 The following schemes used by students while working with Maplets for Calculus 

did not appear to either contribute to, or prevent the development of understanding of 

continuity concepts: check-change, check-guess, BB-whole numbers, and function value – 

all true.  Each of these strategies, used by at least three students, were documented, 

however, data suggest these schemes as ineffective – the researcher found no visual or 

verbal data to suggest these strategies contributed to understanding.   

Discussion of the Graph-Slider Feature 

 The first three Maplets used in this study required students to determine the 

continuity of a function by leading them through a series of exercises motivated by the 

definition of continuity.  The Finding the Value of C Maplet develops the understanding 

that if a function is continuous, the left limit and right limit are equal; a reverse premise 

of the first three continuity Maplets.  The exercise within this Maplet (Figure 5.1) 

requires students to use the slider feature to estimate the find values of C, a task all 

students in this study accomplished with ease.  Student difficulty with this Maplet 

occurred as they attempted to find the left and right limits.  All the students initially tried 

to use the graph-trace strategy, using the cursor to trace the graph, to find these limits – 

similar to the strategy they all used in the Continuity Using a Graph Maplet.  
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 The two problems students encountered using this strategy were: 1) the scale of 

the y-axis varied between problems and determining values between the intervals listed 

challenged students (most ended up guessing and checking values); and 2) this strategy 

was successful for determining value of the limit expressed numerically, but prevented 

understanding that the other was an expression of C.  In these two situations, it appears 

the students used their experiences of the Using a Graph Maplet, repeatedly, even after 

many failed attempts.  Eventually, all students used the ‘hint’ or ‘show’ feature to 

determine one limit was a variable expression with C; and from there used substitution to 

find the value of C required for the limit to exist.  Another way the slider hindered the 

development of understanding was that the slider could provide the value of C.  

Confusion arose because students either used their estimate from beginning slider 

 
 
Figure 5.1 Screen shot of Finding the Value of C Maplet  
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exercise or returned to using the slider after computing the correct limits to answer the 

final “C =” question, without following the directions “Equate and Solve for C exactly” 

given in Step 3.  This prevented them from the intended understanding of both procedure 

and concept that required the limits to be equated.  In addition to student success with the 

Using a Graph Maplet of the first session, the motivation for continued use of the 

graph/slider feature may have come from students’ preference for working in the 

embodied world.  As described in the Findings section of Chapter IV, the progression of 

Maplet exercises led to development of understanding in the symbolic world, but in this 

Maplet, it appeared students wanted to ‘see’ or ‘find’ the answers on the graph or with 

the slider.  Finally, as the graph/slider feature is prominent, taking up almost one-quarter 

of the window area, students may have been compelled to use it – why would it be there 

if it wasn’t useful?  Its inclusion in this Maplet, while well intended for showing how the 

correct value of C would make the function continuous, seemed to inhibit the 

development of student understanding of the properties of continuity. 

Recommendations 

 The research presented in this study has implications for researchers investigating 

learners’ understanding of mathematics, researchers investigating the use of technology 

for building understanding, software/applet developers, and high school/college 

instructors. 

Researchers Investigating Learners’ Understanding of Mathematics 

 Grounded in the theory of Tall’s Three Worlds Model (2008), this study applied 

the work of Núñez et al. (1999) to continuity concepts to create a learning framework 

similar to those created by Drijvers (2003) levels of understanding of parameter (Figure 
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2.1) and Hahkiöniëmi’s (2006) framework for derivative (Figure 3.5).  One result of this 

study included a similar framework (Figure 4.1).  Whether presented as a diagram or as 

rubrics similar to van Hiele’s (1986) levels of geometric thinking and Chan’s (2011) 

conceptual understanding rubric of continuity (Figure 2.3), the development of such 

frameworks is important for determining levels of understanding.  This knowledge of 

learners’ understanding of mathematics concepts becomes more important when 

investigating learners’ transitioning from embodied to symbolic mathematical 

understanding.  As Tall stated, and Núñez et al. specified with continuity concepts, 

calculus is a subject that exists in both the embodied and symbolic worlds.  However, as 

proof in mathematics is most often conducted in the axiomatic-formal world with 

proceptual-symbolic objects and ideas, documenting learners’ development and 

understanding in the symbolic world is important.  Developed frameworks similar to the 

one used in this study can provide guidance for determining learners’ understanding of 

mathematics concepts and for developing tools, exercises, or test items for doing so. 

 The procedure used to develop the framework of Figure 4.1 can also inform 

researchers considering learners’ understanding of mathematics.  The combination of 

theory, concept, instructor consultation, and student evidence provides guidance for the 

development of such frameworks for other topics.  If, as suggested in the previous 

paragraph, frameworks such as the one developed in this study can be used for 

developing tools and test items, which could be used in quantitative studies, it may be of 

benefit to prepare such frameworks prior to an investigation.  In considering a qualitative 

study, such a framework forces a researcher to determine and validate what qualifies as 

evidence of one level of understanding versus another.  The use of student verbal data in 
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this study necessitated the development and use of such a framework and can inform 

other researchers.  

Researchers Investigating the Use of Technology for Building Understanding  

 Drijvers and Trouché (2008) stated the instrumental approach, “…stresses the 

subtle relationship between machine technique and mathematical insight, and provides a 

conceptual framework for investigating the development of schemes…” (p. 375).   They 

also observed, “A difficulty is that we cannot observe mental schemes directly.  Our 

observations are limited to techniques students carry out with the artifact, and to the way 

they report on this in written or oral form.” (p. 371)  In defending the ‘think aloud’ 

method of collecting data, Ericsson and Simon (1980, 1984) contended that information 

in short term memory is accessible to a subject without changing thought processes, and 

that engagement in a problem solving task prevents a subject from interpreting the 

reasons for their decisions.  The method of data collection (oral and screen capture 

recording) combined with the instrumental approach of Drijvers and Trouché enabled the 

investigator to determine features of the Maplets and strategies students developed that 

promoted conceptual understanding of continuity concepts.  Additionally, the use of 

qualitative methods allowed the researcher to determine individual strategies (such as the 

prompts-direction) that, while not used by the majority of the students, contribute to 

student understanding of mathematics concepts. 

Software/Applet Developers 

 As noted by the NCTM (1989, 2000) and the NGA/CSSO (2010), technology is 

necessary for the teaching and learning of mathematics and the availability of 

technological tools is now assumed.  Fey et al. (2010) and Zbiek (2003) stated the need to 
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investigate new technologies as their development and implementation outpace the 

investigation of their effectiveness.  The findings of this study inform developers of 

software/applets by providing a method for ‘field-testing’ their products prior to mass 

distribution.   Though only seven participated in this study, the recorded sessions of these 

students provided a depth and breadth of data that developers are likely to find sufficient 

for informing decisions about software improvements and development.  The benefit to 

developers for recording and documenting a few cases of users engaged in their 

technology prior to general release would be invaluable. 

 The findings of this study inform applet developers about the features found to 

promote understanding. Overt features of the Maplet software, the ability to ‘check’ and 

‘change’ responses engaged students and helped them develop understanding of 

continuity concepts.  The inclusion and effective use of a ‘hint’ feature, supports the 

claim of Jocobse and Harskamp (2009) that the inclusion of cognitive hints in technology 

help promote understanding of mathematics concepts.  The findings for the effectiveness 

of the ‘subtle’ features, such as the presentation and layout of the Maplet exercises, the 

order of the Maplets, and variation of problems can help developers by understanding the 

contributions of each to user learning.  Awareness that some features provide nothing 

more than a distraction (the graph/slider feature) or that particular features may not work 

with some students (hints) inform developers of the need to either improve or remove 

features. 

High School/College Instructors 

  The findings of this study provide evidence of an increase in students’ 

understanding of continuity concepts through the use Maplets for Calculus.  However, as 
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Meade and Yasskin (2008) noted, the Maplets are intended as a supplements to classroom 

instruction.  Student experience with the Epsilon-Delta Continuity Maplet lends further 

emphasis to this point.  Having prior classroom or study experience with the concept of 

epsilon-delta limits and continuity, as provided with the preview sheet given students, is 

essential for ensuring that students gain further understanding while working with the 

Maplets.  Maplets are not a replacement for classroom or lecture hall instruction.  While 

Maplet software applets can increase the understanding of a concept, Meade and Yasskin 

designed and promote Maplets as a ‘tutoring’ software package to supplement instruction 

(2008, December).  

 The number of Maplets, over 140 as of this writing, and applets and various other 

software choices available to instructors and students can be overwhelming.  This study 

provides data to inform choices in both the selection of applets for use as well as the 

methods of use.  The features of the Maplet tutorial applets that predicated student 

understanding – the ability to check and change responses, availability of cognitive hints, 

variety of problems, a layout of problems leading to the development of a concept, etc. 

are features of Maplets that should be considered when determining a software/applet for 

use with students.  Many tutorial applets and software packages present problems and 

give ‘right/wrong’ feedback to students without the ability to modify the response.  The 

ability to check and modify or change responses may be the feature most responsible for 

the student gains in understanding demonstrated in this study.   

 In addition to informing the choice of applets for use in instruction, the utilization 

schemes developed by students while using Maplets have implications for their use in 

classroom instruction and by students. The intermediate steps of the check-rework-
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change and check-review-change appeared to most influence the development of 

understanding of the continuity concepts when students used the Maplets.  Instructors 

should consider demonstrating and encouraging these practices prior to, or during, 

students’ use of these programs.  Instructors can also inform students of other successful 

strategies, such as the use of the prompts/directions that lead to development in 

understanding.  In this recommendation, the instructor should facilitate the experience of 

students working with applet technology.  This facilitation could include: providing 

guidance for student using applets in a classroom setting; presenting a demonstration of 

the applet prior to student use; and leading a classroom discussion about strategies 

students developed that promoted understanding when using the applets.  

 The student difficulty that occurred while using the graph/slider feature of the 

Finding the Value of C Maplet demonstrated an unexpected situation that only became 

apparent as the students engaged with the software.  While instructors may rely on the 

developers to provide them with a product that is ready to use, it may be advantageous 

for instructors to preview the software and use it with a few students prior to use with all 

students. 

 The evidence presented in Chapter IV in which one student attempted over 10 

problems while working with the Continuity given a Piecewise Function Maplet, shows 

that Maplets may contribute to the CCSSM Practice calling for persistence in problem 

solving. 

Suggestions for Future Research 

  The case study method of this investigation precludes the generalization of the 

findings to other student populations.  The students included in this study consisted of 
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high school students; Maplets for Calculus were designed by college professors (Meade 

and Yasskin) for use by college students enrolled in calculus courses.  While the opinion 

of this investigator is that the findings of this study are likely to produce similar results 

with college students (as well as AP Calculus students enrolled in other high schools), 

this opinion requires further investigation.  One consideration of methodology for this 

study was a mixed methods investigation that would have included a pre- and post- 

evaluation of student understanding of continuity concepts with a hypothesis that students 

using Maplets for Calculus would experience higher gains in score on the evaluation 

when compared to students who did not use Maplets for Calculus.  

  Additionally, as this study used only five of the over 140 available Maplets, 

investigation involving other Maplets (or applets) is needed to determine if the features 

and strategies determined effective for developing understanding of continuity concepts 

are also effective in other applets and/or with other mathematical concepts. 

 One of the benefits to the teachers of the AP Calculus classes whose students 

participated in this study was license to use the Maplets for Calculus software with their 

classes after the data collection phase.  Both of these instructors, as well as a pre-calculus 

teacher at one of the schools, indicated they had previewed other Maplets in the series 

and discussed which they might include in their instruction.  This suggests a study in 

which the use of Maplets for instruction (as one teacher had done with the Derivatives 

Using the Chain Rule Maplet) and student use during a calculus class/course are 

documented to determine if Maplets (or other applet technologies) influence the 

achievement of students enrolled in these classes/courses.  This also suggests an 

investigation into the choices an instructor makes about which Maplets (or applets) to use 
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with a class and the results of these selections on student learning.  An investigation of 

this type has potential for adding to the knowledge base in a number of ways: comparing 

choices of two or more teachers teaching common course; comparing student outcomes 

for particular units of study between two teachers employing different applets; 

investigating different teaching methods of two teachers using the same applet; etc. 

 Any of the features and strategies frequently used by students could be 

investigated further to determine if their contribution to student understanding of 

mathematical concepts can be generalized to include other Maplet or applet software, or 

are these findings particular to the features and Maplets of this study.  For example, the 

‘check’ and ‘change’ features were shown to contribute to students’ understanding of 

continuity concepts; is this necessarily true for other Maplets or applets that have these 

features?  Is this necessarily true with mathematical concepts other than continuity?  

Furthermore, a new investigation might determine the characteristics of features that 

become instruments and contrast these with features that do not.  Recall the instrumental 

genesis is the process by which a tool or artifact becomes and instrument (Drijvers and 

Trouché, 2008).  This process requires the user to develop mental schemes involving 

knowing how to use the artifact appropriately and understanding for which circumstances 

the artifact is useful (p. 368)  Are particular features better suited to become instruments 

and be used in strategies than others?  Why?  For example, all students in this study 

employed the check-reflect-change or check-rework-change strategies and became 

proficient in applying them.  Why these features and these strategies?   How come the 

‘hint’ feature did not become an instrument, even though students said in interviews they 

wanted to use them?  Is this an issue of students’ being unable to develop an appropriate 
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strategy, or a characteristic of the feature?  These questions are fertile ground for future 

investigations.
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Appendix B – Parent Consent and Student Assent Forms 

 

 
LeConte College, 1523 Greene Street, Columbia, SC 29208 

 

Dear parent: 

 

We would like to invite your child to participate in a study of an innovative calculus 

learning system, Maplets for Calculus.  I am Professor Douglas Meade, the project’s 

principal investigator.  The study will be conducted by Mr. Ray Patenaude, a math 

teacher at South Pointe High School and a doctoral candidate at USC, under my 

supervision. 

 

Your child’s participation will require approximately three one-hour sessions, in which 

they will be asked to work several calculus problems using Maplets for Calculus. We will 

record him or her as they work the problems and “think aloud” so that we can follow 

their work.  Analysis of the recordings will help us to understand how students perceive 

the system, and to improve the system’s effectiveness.  

 

Your child’s participation in this project is voluntary. Your decision of whether to allow 

your child to participate in this study will not affect your child’s grades, either negatively 

or positively. If you choose to allow your child to participate, you or the student may 

decide to terminate participation in the study at any time for any reason with no penalty. 

Participation in the study involves no foreseeable risks. 

 

All data generated by this study will be kept confidential, and no personally identifiable 

information will be included in any research papers or other materials that may result 

from the study. 

 

If you have any questions about the research, you may contact Mr. Patenaude at (803) 

487-4048, email raypatenaude@comporium.net.   Alternatively, you may contact me at 

the University of South Carolina Department of Mathematics, LeConte College 300e, 

Columbia, SC 29208, phone (803) 622-1595, email MEADE@mailbox.sc.edu with any 

questions or concerns. 

 

Finally, if you have any questions about your child’s rights as a research subject, you 

may contact: Thomas Coggins, Director, Office of Research Compliance, University of 

South Carolina, Columbia, SC 29208, Phone - (803) 777-7095, Fax - (803) 576-5589, E-

Mail - tcoggins@mailbox.sc.edu.

mailto:raypatenaude@comporium.net
mailto:tcoggins@mailbox.sc.edu
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Thank you for taking time to consider this request.  If you agree to allow your child to 

participate, please fill in the blanks in the attached form and return it to Mr. Patenaude. 

 

Sincerely, 

 

 

Dr. Douglas Meade 

 

 

 

 

 

Maplets for Calculus parent consent form 

 

I have read (or have had read to me) the contents of this consent form and have been 

encouraged to ask questions. I have received answers to my questions. I give my consent 

for my child to participate in this study, and I have been told that he or she may withdraw 

at any time without negative consequences. I may retain the attached explanation of the 

research for my records and future reference. 

 

 

Student’s name:   ________________________________________________________  

 

Parent/legal guardian’s name:  _____________________________________________  

 

Parent/legal guardian’s signature: ___________________________Date:  ___________  

 

 

  



www.manaraa.com

 

179 

 

 
LeConte College, 1523 Greene Street, Columbia, SC 29208 

 

Dear student: 

 

We would like to invite you to participate in a study of an innovative calculus learning 

system, Maplets for Calculus.  I am Professor Douglas Meade, the project’s principal 

investigator.  The study will be conducted by Mr. Ray Patenaude, a math teacher at South 

Pointe High School and a doctoral candidate at USC, under my supervision. 

 

Your participation will require approximately three one-hour sessions, in which you will 

be asked to work several calculus problems using Maplets for Calculus. We will record 

you as you work the problems and “think aloud” so that we can follow your work.  

Analysis of the recordings will help us to understand how students perceive the system, 

and to improve the system’s effectiveness.  

 

Your participation in this project is voluntary. Your decision to participate in this study 

will not affect your grades or academic standing either negatively or positively. If you 

choose to participate, you may decide to terminate participation in the study at any time 

for any reason with no penalty. Participation in the study involves no foreseeable risks. 

All data generated by this study will be kept confidential, and no personally identifiable 

information will be included in any research papers or other materials that may result 

from the study. 

 

If you have any questions about the research, you may contact Mr. Patenaude at (803) 

487-4048, email raypatenaude@comporium.net.   Alternatively, you may contact me at 

the University of South Carolina Department of Mathematics, LeConte College 300e, 

Columbia, SC 29208, phone (803) 622-1595, email MEADE@mailbox.sc.edu with any 

questions or concerns. 

 

Finally, if you have any questions about your rights as a research subject, you may 

contact: Thomas Coggins, Director, Office of Research Compliance, University of South 

Carolina, Columbia, SC 29208, Phone - (803) 777-7095, Fax - (803) 576-5589, E-Mail - 

tcoggins@mailbox.sc.edu. 

 

  

mailto:raypatenaude@comporium.net
mailto:tcoggins@mailbox.sc.edu
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Thank you for taking time to consider this request.  If you agree to participate, please fill 

in the blanks below and return this form to Mr. Patenaude. 

 

Sincerely, 

 

 

Dr. Douglas Meade 

 

 

 

Maplets for Calculus Student Assent Form 

 

I have read the description of the study in this form, and I have been told what the 

procedures are and what I will be asked to do in this study. Any questions I had have 

been answered. I have received permission from my parent(s) to participate in the study, 

and I agree to participate in it. I know that I can quit the study at any time. I will be given 

the attached explanation of the research for future reference. 

 

Student’s name:   _______________________________________________________ 

 

Student’s signature: __________________________________ Date:  ____________  

 

As a representative of this study, I have explained to the participant or the participant’s 

legally authorized representative the purpose, the procedures, the possible benefits, and 

the risks of this research study; the alternatives to being in the study; the voluntary nature 

of the study; and how privacy will be protected. 

 

Representative’s signature: ____________________________ Date:  ____________  
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Appendix C –High School Consent for Research Letters 

 

 The following is an example of the letter of consent signed by the principals of 

the high schools whose students participated in this study.   

 

To Whom It May Concern: 

 

 Mr. Ray Patenaude, PhD candidate at the University of South Carolina, 

has my support to conduct research for his dissertation, the proposed entitled, 

“The Use of Applets for Developing Understanding in Mathematics: A Case Study 

Using Maplets for Calculus with Continuity Concepts,” at    High School. 

 

 I understand his proposal will involve the participation of three AP 

Calculus students enrolled at    High School for three one-hour sessions.  

These sessions will involve the recording of the students’ computer activity as 

well as audio recordings of the students as they ‘think aloud’ (talk aloud while 

solving problems) while using computer applets, Maplets for Calculus, about the 

continuity of functions. 

 

 Furthermore, I understand that prior to collecting any data at our school, 

Mr. Patenaude will ask for and receive the written consent of both the student 

participants and their parent/guardians and that participation is voluntary – student 

participants and/or their parents may choose to withdraw from this study at any 

time without fear of reprisal.  Mr. Patenaude does not teach, nor does he hold a 

position of direct authority over the students who may participate in this study. 

 

 Mr. Patenaude has assured me that any data pertaining to students will be 

encoded to ensure the confidentiality of the students, and that any published or 

presentations regarding his findings will refer to     High School 

using geographic descriptions, i.e. a high school in northern South Carolina. 

 

Sincerely, 

 

School Principal 
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Appendix D – Protocol for M4C Recording Sessions 

 

1. Introduce observer 

a. My background as a teacher and student at USC 

 

2. Describe purpose of recording session 

a. Working with team developing applets to teach math 

b. Want to watch students using software in order to improve applets 

 

3. Consent 

a. Let student know that their participation is voluntary and they are free to stop 

at any time 

b. Ask permission to continue 

 

4. Describe and practice Think-Aloud Method 

a. Want you to talk out loud while solving problems and working with software 

b. This will give us an idea of what is good/bad about the applets 

c. I will prompt you to “keep talking” if you go quiet for 20 seconds  not an 

insult/discipline, we need to know what you’re thinking, good or bad 

 

5. Practice Problem 

a. Give student a practice math problem (not on computer) of relative ease 

(probably adding two fractions with different denominators) to practice 

“thinking aloud” 

b. Student will be provided paper and pencil or asked to work on whiteboard 

c. At conclusion, ask if student understands how we will proceed 

d. Ask for consent to continue 

 

6. Intro to software/applet 

a. Introduce student to applet and explain features and how to use the applet 

 

7. Ask student to continue working with applet while talking aloud 

a. Screen capture and oral recording of student using software 

b. Monitor student and end session when student either “masters” applet 

(consecutive problems answered correctly with little difficulty), or gets 

frustrated on three consecutive attempts, or in 20 minutes. 
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8. Short interview with subject 

a. Ask about particular episodes while working with Maplet (noted by observer) 

b. Ask about Maplet (for developers) 

i. What did you like about this Maplet? 

ii. What didn’t you like? 

iii. Any other thoughts about using Maplet you’d like us to know? 

 

9. Conclude session and thank participant. 
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Appendix E – Description of Maplets 

 

Continuity using a Graph Maplet 

Figure E.1 Beginning screen shot of Continuity using a Graph Maplet. 

 

 The Continuity using a Graph Maplet (Figure E.1) provides the user with the 

graph of a piecewise function.  The instructions require the user to input the left limit, the 

right limit, and the value of the function at a given value of x.   The user is then directed 

to answer a series of true/false questions: does the limit of f(x) exist? Is the function 

continuous from the left and right?  Is the function continuous?
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 Features available to the user include: ‘check’ answers and re-enter responses, 

obtain ‘hints’ for each item, and ‘show’ all answers.  When complete, the ‘new function’ 

button gives a computer generated function and the exercise begins again. 

Continuity using a Piecewise Function Maplet 
 

Figure E.2 Beginning screen shot of the Continuity using a Piecewise Function Maplet. 

 

 

 The Continuity using a Piecewise Function Maplet (Figure E.2) provides the user 

with the formula of a piecewise function.  As with the Given a Graph Maplet, the user is 

expected to input the left limit, the right limit, and the value of the function.   In the 

second step, the user is expected to answer the same true/false items: does the limit of f(x) 

exist? Is the function continuous from the left and right?  Is the function continuous? 
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 Features available to the user include: ‘check’ answers and re-enter responses, 

obtain ‘hints’ for each item, and ‘show’ all answers.  When complete, the ‘new function’ 

button gives a computer generated function and the exercise begins again. 

Continuity given a Black Box Function Maplet 

Figure E.3 Beginning screen shot of Continuity using a Black Box Function Maplet. 

 

 

 The Continuity using a Black Box Function Maplet (Figure E.3) provides the user 

with a Black Box Function.  Users can values for x into the function, clicks ‘enter’, and 

the numeric value of the function are displayed.  Using the function values, the user is 

directed to input the left limit, the right limit, and the value of the function.   As with the 

previous Maplets, the user is then asked the true/false items: does the limit of f(x) exist? 

Is the function continuous from the left and right?  Is the function continuous? 
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 Features available to the user include: ‘check’ answers and re-enter responses, 

obtain ‘hints’ for each item, and ‘show’ all answers.  When complete, the ‘new function’ 

button gives a computer generated function and the exercise begins again.  The diagram 

of Figure E.4 shows a screen shot of this Maplet after using the ‘check’ feature. 

Figure E.4  Screen shot of Black Box Maplet after using the ‘check’ feature. 
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Finding the Value of C Maplet 

Figure E.5 Beginning screen shot of the Finding the Value of C Maplet 

 

 The Finding the Value of C Maplet (Figure E.5) presents the user with a 

piecewise function with the stated goal, “Find the value of C so that the following 

function is continuous.”  The user is then directed to use the graph/slider to estimate the 

value of C.  The value of C can be entered either by using the slider or typing a value into 

the blue box.  As the value of the slider approaches the actual value of C, the graph 

moves to become continuous (Figure E.6).  Step 2 expects users to compute the left/right 

limits of the function.  Unlike the previous Maplets, the user can ‘check’ individual limit 

responses and/or ‘show’ the correct answers to the individual limits.  The ‘hint’ feature is 

available for both limits.  Only when both limits are correct can the user input a response 
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for C in Step 3.  Users may use the ‘hint’, ‘check’, and ‘show’ feature for this item as 

well.  Figure E.6 shows a screen shot of this Maplet after: estimating C = - 4 in the slider 

feature, using ‘show’ for the left limit, and the ‘check’ feature for the right limit. 

Figure E.6 Screen shot of the Finding the Value of C Maplet after using the ‘show’ and ‘check’ feature. 

 

Epsilon-Delta Continuity Maplet 

 The Epsilon-Delta Continuity Maplet (Figure E.7) presents users with a limit and 

a given value for epsilon.  By using the slider, or by typing in values for delta, the user is 

directed to find a value of delta that satisfies the given epsilon condition of the limit.  As 

the value of delta decreases, the vertical, blue ‘delta-band’ on the graph narrows and the 

‘gold’ box approaches the horizontal, pink ‘epsilon-band’.  Users can ‘check’ values of 

delta and ‘show’ correct values as well.  Correct values of delta are ones in which the  
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Figure E.7 Screen shot of the Epsilon-Delta Continuity Maplet after using ‘check’ feature  

 

‘gold’ box is completely within the pink ‘epsilon-band’ (Figure E.8).  After choosing a 

correct value for delta, the epsilon-slider can be moved to set another condition using the 

same limit.  The ‘new limit’ feature provides a new exercise with a different function. 

.  
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  Figure E.8  Screen shot of the Epsilon-Delta Continuity Maplet after ‘checking’ a correct value of delta. 
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Appendix G – Coding Schemes 

Features Coding Scheme 

 Table G.1 contains the abbreviation and descriptions of the codes used for 

analyzing the transcribed data to document the features used by students while working 

with Maplets for Calculus about continuity. 

Table G.1 

Schemata used for coding transcripts for features of Maplets used. 

Code Feature Description 

BB Black Box Use black box function of a Maplet 

Calc-C Calculator-

Compute 

Use TI-84 calculator to compute values. 

Calc-

GR 

Calculator-

Graph 

Use graphing feature of TI-84 calculator. 

CG Change Change a previously entered response to a Maplet item. 

CK-C Check-Correct Use of check feature of a Maplet – receive feedback that all items are correct. 

CK-I Check-Incorrect Use of check feature of Maplet – receive feedback of incorrect input. 

CK-W Check-Warning Use check feature of a Maplet – receive warning message. 

GR-I Graph-

Interpretive 

Using graph feature of a Maplet with oral evidence referring to the graph. 

GR-T Graph-Trace Using graph feature of a Maplet with visual evidence of tracing on screen 

with cursor. 

HT Hint Use the hint feature of Maplet. 

LC/RC Left/Right  

Continuity 

Used in combination with other codes to designate left or right continuity. 

For example HT-RC denotes use of hint feature for the right continuity item. 
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Utilization Schemes Coding Scheme 

 Table G.2 contains the abbreviation and descriptions of the codes used for 

analyzing the transcribed data to document the strategies used by students while working 

with Maplets for Calculus about continuity. 

Table G.2 

Schemata used for coding transcripts for utilization strategies of students. 

 
Code Strategy Description 

BB-D Black Box-

Decimals 

Use of the black box feature by entering decimal values. 

BB-W Black Box – Whole 

Numbers 

Use of the black box feature by entering whole number values. 

Calc-

Comp 

Calculator – 

Compute 

Use of calculator for computational purposes. 

Calc-

GR-PW 

Calculator-Graph-

Piecewise 

Use of graphing capability of graphing calculator to graph individual 

parts of piecewise function. 

CK-CG Check-Change Use of check feature followed by change of incorrect response without 

visual or oral evidence of intermediate activity. 

CK-HT-

CG 

Check-Hint-Change Use of check feature followed by use of the hint feature prior to 

changing a response.  This code collapsed into check-rework-change. 

CK-RF-

CG 

Check-Reflect-

Change 

Use of the check feature followed by oral evidence indicating reflection 

or description of reasoning, followed by changing a response. 

   

  

Code Feature Description 

LL/RL Left/Right  

Limit  

Used in combination with other codes to designate left or right limit. For 

example HT-LL denotes use of hint feature for the left limit item. 

P-C Paper-

compute 

Use paper/pencil for computation 

P-T Paper-Table Use paper/pencil to make a table of values 

SH Show Use of the Maplet feature ‘show’. 

SL Slider Use of the slider feature of a Maplet. 
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Code Strategy Description 

CK-

RW-

CG 

Check-

Rework-

Change 

Use of check feature followed by visual evidence of working with either 

Maplet features or paper, pencil, or calculator prior to changing a response.  

FV-T Function 

Value – True 

Use the value of the function given by the Black Box feature as response for 

left/right limit and f(x) values of limit items and answer TRUE to all 

continuity items of the Black Box Maplet. 

GR-T Graph-Trace Use of the graphing feature and cursor to trace the graph 

GU-CK Guess-Check Repeated oral or visual evidence of student guessing at correct response 

followed immediately by use of the check feature to determine if response was 

correct.   

HT-SH Hint-Show Use of hint feature followed by the use of show feature of Maplet. 

P-C Paper-

Compute 

Use of paper and pencil to compute values or solve equations. 

P-T Paper-Table Use paper and pencil to make a table of values. 

PT-DR Prompts – 

Directions 

Oral evidence of reading the prompts or directions, followed by oral or visual 

evidence of student following the directions as stated. 

SL-FC-

AF 

Slider – Find C 

– After 

Use of the slider feature to determine the value of C after successful 

completion of the limit exercises. 

SL-FC-

BF 

Slider-Find C - 

Before 

Use of slider feature of the Finding the Value of C Maplet to determine the 

value of C prior to completing the limit exercises. 
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